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Simulation of Arbitrarily-shaped Magnetic Objects
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Figure 1: A neodymium permanent magnet naturally attracts a number of binderclips, which have thin and sharp features. The magnet
simulation method proposed in this paper enables arbitrarily-shaped magnetic objects to be simulated stably and efficiently.

Abstract
We propose a novel method for simulating rigid magnets in a stable way. It is based on analytic solutions of the magnetic vector
potential and flux density, which make the magnetic forces and torques calculated using them seldom diverge. Therefore, our
magnet simulations remain stable even though magnets are in close proximity or penetrate each other. Thanks to the stability,
our method can simulate magnets of any shapes. Another strength of our method is that the time complexities for computing the
magnetic forces and torques are significantly reduced, compared to the previous methods. Our method is easily integrated with
classic rigid-body simulators. The experiment results presented in this paper prove the stability and efficiency of our method.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Magnets are frequently used in our daily lives, including refriger-
ator magnets at home, push pin magnets at office, and neodymium
magnets at science classes. In the field of computer graphics, mag-
net simulations have been earnestly investigated since the pio-
neering work of Thomaszewski et al. [TGPS08]. Most recently,
Kim et al. [KPH18] presented rigid magnet simulations, Huang
et al. [HHM19] presented magnetic fluid simulations, and Ni et
al. [NZWC20] presented magnetic liquid-solid simulations.

Magnetic objects (henceforth, simply magnets) generate mag-
netic fields, and the other magnets may become magnetized by the

magnetic fields. Then, the magnetization and the magnetic fields
determine magnetic forces and torques, which move the magnets.

To simulate interactions between rigid magnets, Thomaszewski
et al. [TGPS08] and Kim et al. [KPH18] used magnetic dipole mo-
ments, which are called in short magnetic moments. Being point
magnets, they are sampled from the magnet body volumes. Fig. 2-
(a) depicts two magnets’ configuration in a rigid-body simulation
step. Each magnet’s cross section is sampled with 9 magnetic mo-
ments. Two magnets are in close proximity and so are the magnetic
moments, especially those enclosed with a dotted ellipse. Then, the
magnetic forces and torques become stronger than the exact so-
lutions, leading to unnatural simulation results. As experimentally
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Figure 2: Magnetic moments are regularly sampled from the rigid
magnets. (a) The magnets are close to each other, and so are the
magnetic moments. (b) Due to interpenetration, magnetic moments
become too close, resulting in unstable rigid-body motions.

proven by Thomaszewski et al. [TGPS08], this is due to numeri-
cal errors. A solution to this problem is to increase the number of
magnetic moments. Unfortunately, this significantly increases the
computational cost since volumetric evaluation over a pair of mag-
nets is required.

The closer the magnetic moments are, the stronger the magnetic
fields are. Fig. 2-(b) shows a subsequent simulation step, where
the magnets penetrate each other. (Contact resolution in existing
rigid body solvers cannot always completely resolve interpenetra-
tion, which is thus permitted in virtually all physics engines such
as Bullet Physics [Cou15].) As the distance between magnetic mo-
ments is close to zero, the magnetic fields diverge and so do the
magnetic forces and torques. Magnets frequently collide with each
other due to the attractive forces, and the magnetic moment-based
simulation method suffers from the instability problem.

Thomaszewski et al. [TGPS08] attempted to prevent the exces-
sive forces and torques by imposing the lower limits on the dis-
tances between magnetic moments, i.e., they directly controlled the
magnetic forces and torques without being able to prevent exces-
sive magnetic fields, which lead to strong magnetic moments. Such
magnetic moments bring huge and wide impact on the other (even
distant) magnetic moments. Kim et al. [KPH18] handled this prob-
lem by limiting the strengths of magnetic moments, still without
being able to prevent excessive magnetic fields, which make the
magnetic moments hard to converge.

In this paper, we propose a novel method for computing mag-
netic forces and torques by integrating numerically over a magnet
body’s boundary. We neither use the magnetic moments nor con-
sider the magnet body’s volume. The mathematical expressions of
the forces and torques are developed upon “analytic” solutions of
magnetic vector potential and magnetic flux density, which Fab-
bri [Fab08] proposed for uniformly magnetized objects. Because
the time complexities of the analytic solutions are constant, the cost
for computing the forces and torques is significantly reduced, com-
pared to the magnetic moment-based method.

Because the analytic solutions take into account the continuity
of magnetization within the magnet body, not only the magnetic
vector potential and flux density but also the magnetic forces and
torques calculated using them seldom diverge. Therefore, our mag-

net simulations remain mostly stable even if the magnets penetrate
each other.

Another problem of the magnetic moment-based method is that
it has difficulties in handling “magnets with sharp features” because
not only do they require high resolutions of magnetic moments but
also they are more likely to penetrate each other due to torques. To
circumvent this difficulty, the magnets used in the experiments of
Thomaszewski et al. [TGPS08] and Kim et al. [KPH18] are mostly
limited to rounded shapes, such as rotation-invariant metal balls,
because they are less likely to interpenetrate.

The theoretical and technical contributions of our method are
summarized as follows:
• The magnetic forces and torques are integrated over the magnet

boundaries, and therefore the time complexities of computing
them are considerably reduced, which is a significant improve-
ment over the magnetic moment-based method.
• We adopt closed-form expressions to compute the magnetic vec-

tor potential and flux density, which are then used for calculating
the magnetic forces and torques. As well as the magnetic vector
potential and flux density, the forces and torques seldom diverge,
providing stable simulations of magnetic interactions.
• Our method can stably and efficiently handle any kinds of mag-

net shapes represented in polygon meshes. For example, com-
plex shapes with thin and sharp features (such as binderclips and
paperclips) can be properly simulated.

This paper is organized as follows. Section 2 reviews the related
studies. Section 3 describes the magnetic moment-based method,
and Section 4 presents our novel method. Section 5 proposes to
combine the two methods for the sake of efficiency. Section 6 re-
ports the experiment results, and Section 7 concludes the paper.

2. Related Work

In the field of magnetics, a number of methods for analytically
calculating magnetic forces and torques have been proposed. Ak-
oun and Yonnet [AY84] suggested a method for calculating the
magnetic forces between two cubic magnets aligned in parallel.
Given the same configuration, Allag and Yonnet [AY09] proposed a
method that evaluates magnetic torques as well as magnetic forces.
In the work of Vokoun et al. [VBHŠ09], magnetic forces for cylin-
drical magnets were considered. The analytic methods are accurate
and fast but are difficult to generalize to various geometric shapes.
In order to overcome the limitation, i.e., to calculate the magnetic
forces and torques between arbitrarily-shaped magnets, De Graef
and Beleggia [DGB09] proposed to use 3D Fourier Transform. Un-
fortunately, it is necessary to use extremely high resolutions of the
frequencies for the solution to be accurate.

As we conduct the boundary integral to compute magnetic forces
and torques, our method is similar to boundary element method
(BEM). With regard to BEM in magnetics, Koizumi et al. [KOU90]
proposed the method for calculating magnetic flux density. Kuhn
and Steinbach [KS02] used FEM-BEM coupling to evaluate mag-
netic flux density. Fabbri [Fab08] proposed a solution for calculat-
ing magnetic flux density through analytical integration over the
boundary of a polyhedral magnet. However, these methods do not
focus on the calculation of magnetic forces and torques.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



S. Kim & J. Han / Simulation of Arbitrarily-shaped Magnetic Objects

In the computer graphics field, Thomaszewski et al. [TGPS08]
proposed the first earnest work for magnetic interactions integrated
with rigid-body simulations. In their work, the magnetic fields are
generated by permanent magnets, then the magnetization is deter-
mined by the magnetic fields based on the linear constitutive rela-
tion, and finally the magnetization and the magnetic fields produce
magnetic forces and torques. Kim et al. [KPH18] proposed magne-
tization dynamics to limit the strength of magnets, which stabilizes
the rigid magnet simulations. However, these methods suffer from
instability when magnets interpenetrate.

Several works have been reported in the domain of non-
rigid magnet simulation. Using Smoothed Particle Hydrodynamics
(SPH) method [MCG03], Ishikawa et al. [IYI∗13] simulated mag-
netic fluids. They also expressed spikes at the fluid surfaces using
an energy minimization scheme. Huang et al. [HHM19] simulated
complex dynamics of magnetic fluids in an accurate and effective
way. Their method provided unconditionally stable magnetic forces
between magnetic SPH particles without a singularity of force. Ni
et al. [NZWC20] proposed a level-set method based on Eulerian
approach for simulating magnetic liquids and solids. Their method
uses magnetic forces exerted on the material’s boundary, which is
different from our method that uses body forces.

There have been efforts for magnetostatic visualization. Based
on molecular dynamics approach, Klein and Ertl [KE04] visual-
ized magnetic field lines by simulating ellipsoidal-shaped particles
made of ferromagnetic materials. Bachthaler et al. [BSW∗12] used
lines connecting magnetic moments to reveal the topological struc-
ture of the magnetic flux. Park et al. [PLH16] visualized 3D mag-
netic fields using view-dependent streamlines in the context of vir-
tual science experiments. Yoon et al. [YLUH14] presented an iron
filing art tool, where the user provides a silhouette of a 2D target
shape and then the patterns of the iron filings are automatically gen-
erated through the principle of magnetism.

3. Equivalent Dipole Method

In order to calculate magnetic forces and torques, Thomaszewski
et al. [TGPS08] and Kim et al. [KPH18] used magnetic mo-
ments, which are vector quantities. Every magnetic object, sim-
ply named magnet, has its own magnetic moments. For example,
a neodymium magnet’s magnetic moments are non-zero and typi-
cally large whereas an isolated metal ball’s are zero or close to zero.
Magnetization is defined as the magnetic moment density. It is also
a vector quantity. Let m and M denote the magnetic moment and
the magnetization, respectively.

A magnetic moment generates a magnetic field. The magnetic
fields induce the other magnets. If a magnet can be easily induced
by the magnetic fields that the other magnets generate, i.e., if its
magnetic moments are easily changed, it is called an induced mag-
net. In contrast, if its magnetic moments are not changed without an
exceptionally strong magnetic field, it is called a permanent mag-
net. In our work, we do not consider such a strong magnetic field,
and therefore the magnetic moments of a permanent magnet are
assumed to remain unchanged.

A magnetic field is composed of several subfields, and the one
that is related with magnetic forces and torques is magnetic flux

density. It is denoted as B. Given N magnetic moments, each de-
noted as mi, B at an arbitrary point r is defined as follows [Jac99]:

B(r) = µ0
4π

N

∑
i

(
3ri (ri ·mi)− (ri · ri)mi

‖ri‖5

)
(1)

where µ0 represents the permeability of the free space and ri is the
vector from the position of mi to r.

The magnetization, M, of an induced magnet is determined by B
produced by the other magnets. It is defined as follows:

M =
1
µ0

D−1B (2)

where D represents the self-demagnetizing tensor. This tensor is
determined by the shape of the magnet body and is constant. (In
Section 4.3, we will discuss this in detail.)

The magnetic force, F, and torque, T, exerted on m are deter-
mined by B. According to Ampere’s law, F and T can be formulated
as Taylor series expansions, where the leading terms are defined as
follows:

F = m ·∇B (3)

T = m×B (4)

Equations (3) and (4) can be rephrased using Equation (1):

F =
µ0
4π

N

∑
i

[−15ri

((
m · ri

)
·
(
mi · ri

))
‖ri‖7

+
3ri
(
m ·mi

)
+3
(

m
(
mi · ri

)
+mi

(
m · ri

))
‖ri‖4

]
(5)

T =
µ0
4π

N

∑
i

[
3(m× ri)(mi · ri)

‖ri‖5 − m×mi

‖ri‖3

]
(6)

This kind of method, which uses the magnetic moments to com-
pute the physical quantities such as F and T, is generally called
Equivalent Dipole Method (EDM). Unfortunately, EDM suffers
from serious problems. Above all, Equations (5) and (6) reveal that,
when the magnetic moments are in close proximity, i.e., when ri is
small, F and T become excessively strong. They are not even de-
fined when the magnetic moments perfectly overlap due to inter-
penetration of magnets.

If magnets have sharp features, they are more likely to penetrate
each other due to torques. As a result, magnetic moments are also
more likely to become close, leading to unstable simulations. If we
use a higher resolution of magnetic moments, the instability prob-
lem is aggravated because the magnetic moments are more likely
to be in close proximity.

4. Magnetic Boundary Method

This section presents our method, which overcomes the drawbacks
of EDM. First of all, Section 4.1 defines the magnetic flux den-
sity and magnetic vector potential. Then, Section 4.2 presents how
to compute the magnetic forces, magnetic torques, and mechanical
torques using them. Finally, Section 4.3 discusses how to imple-
ment magnetic induction.
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4.1. Magnetic Vector Potential and Flux Density

Given a magnet with magnetization M, Jackson [Jac99] formulated
the magnetic vector potential, denoted as A, at an arbitrary point r:

A(r) = µ0
4π

∫
V

M(r′)×
(
r− r′

)
‖r− r′‖3 d3r′ (7)

where r′ represents a point within the magnet volume, V . Assum-
ing that M is uniform across V , Fabbri [Fab08] proposed an ana-
lytic solution for A. First, by applying an alternate form of Gauss’
theorem introduced in Arfken and Weber [AW05], Equation (7) is
expressed in the form of integral over the magnet’s surface, ∂V :

A(r) = µ0
4π

M×
∮

∂V

n(r′)
‖r− r′‖ d2r′ (8)

where n(r′) represents the surface normal at r′.

For a polyhedral object, Equation (8) can be transformed into the
sum of the integrals over all polygons:

A(r) = µ0
4π

M× ∑
p∈∂V

Wp(r)np (9)

where p represents a polygon, np is its normal, and Wp(r) is ex-
pressed as follows:

Wp(r) =
∫
p

d2r′

‖r− r′‖ (10)

The magnetic vector potential, A, and the magnetic flux den-
sity, B, are related via the curl operator: B = ∇×A. When ψ

and v respectively represent a scalar and a vector, ∇× (ψv) =
ψ(∇×v)+∇ψ× v. As M is uniform across the magnet volume,
B can be obtained by applying the curl operator to Equation (9):

B(r) = µ0
4π

∑
p∈∂V
∇Wp(r)× (M×np) (11)

As detailed in Appendix A, Wp(r) and ∇Wp(r) can be reformu-
lated and expressed in the following closed forms:

Wp(r) = ∑
e∈∂p

ωe(r)
(
np× (re− r) ·ue

)
−Ωp(r)(rp− r) ·np

(12)

∇Wp(r) = ∑
e∈∂p

ωe(r)
(
np×ue

)
+Ωp(r)np (13)

The elements of Equations (12) and (13) are described as follows:
(i) e represents an edge of p’s boundary, ∂p. (ii) re and rp are ar-
bitrary points on e and p, respectively. (iii) ue is the unit vector
parallel to e. It always points counter-clockwise with respect to p.
(iv) ωe(r) is expressed as follows:

ωe(r) = ln
‖r1− r‖+‖r2− r‖+‖r1− r2‖
‖r1− r‖+‖r2− r‖−‖r1− r2‖

(14)

where r1 and r2 are the end points of e. (v) We decompose p into
a set of triangles. Let t represent a triangle of p, and r1, r2 and
r3 represent three vertices of t. Then, Ωp(r), which represents the

(a) (b)

Figure 3: Visualization of B’s magnitudes over a cross section of
a cubic magnet, which is uniformly magnetized along the upper di-
rection. The magnitudes of B are in rainbow colors, VIBGYOR,
where Violet is the weakest and Red is the strongest. (a) B is com-
puted using Equation (11). (b) B is computed using Equation (1).

signed solid angle with respect to p, is defined as follows [VOS83]:

Ωp(r) = ∑
t∈p

Ωt(r)

= ∑
t∈p

2arctan
(r1− r) · (r2− r)× (r3− r)

D(r)
(15)

D(r) =‖r1− r‖‖r2− r‖‖r3− r‖+
‖r1− r‖(r2− r) · (r3− r)+
‖r2− r‖(r3− r) · (r1− r)+
‖r3− r‖(r1− r) · (r2− r)

Readers are referred to Fabbri’s work [Fab08] for the complete
procedures of deriving the aforementioned equations.

Suppose that B’s closed form in Equation (11) is computed for a
cubic magnet. Fig. 3-(a) visualizes the result in the magnet’s cross
section. Now suppose that the cubic magnet is sampled by 9×9×
9 magnetic moments and EDM computes B using Equation (1).
Fig. 3-(b) visualizes the result. Unlike the groundtruth shown in
Fig. 3-(a), Fig. 3-(b) reveals excessively strong B near the magnetic
moments. Consequently, F (in Equation (3)) and T (in Equation (4))
also become excessive, causing unstable magnetic interactions.

4.2. Magnetic Force and Torque

This subsection presents how to calculate the magnetic force and
torque using the magnetic vector potential, A, and the magnetic
flux density, B, defined above. The magnetic force, F, exerted on a
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magnet is derived as follows:

F =
∫
V

f(r)d3r

=
∫
V

M ·∇B(r)d3r

=
∮

∂V

(
M ·B(r)

)
n(r)d2r

= ∑
p∈∂V

(
M ·

∫
p

B(r)d2r

)
np (16)

where the second line is obtained using Equation (3), the third line
is obtained through the alternate form of Gauss’ theorem used to
derive Equation (8), and the last line is derived as the force is inte-
grated over the polyhedral magnet’s surface.

The magnetic torque, T, is derived in a similar fashion:

T =
∫
V

t(r)d3r

=
∫
V

(
M×B(r)

)
d3r

= M×
∫
V

B(r)d3r

= M×
∫
V

(
∇×A(r)

)
d3r

= M×
∮

∂V

n(r)×A(r)d2r

= M× ∑
p∈∂V

(
np×

∫
p

A(r)d2r

)
(17)

where the second line is obtained using Equation (4), the fourth line
is obtained using the definition of B =∇×A, the fifth line is ob-
tained using another alternate form of Gauss’ theorem introduced
in Arfken and Weber [AW05], and the last line is derived as the
torque is integrated over the polyhedral magnet’s surface.

The mechanical torque, T , is also similarly derived:

T =
∫
V

τ(r)d3r

=
∫
V

(r− rc)× f(r)d3r

=
∫
V

(r− rc)×
(
∇
(
M ·B(r)

))
d3r

=−
∫
V

∇×
((

M ·B(r)
)
(r− rc)

)
d3r

=−
∮

∂V

n(r)×
((

M ·B(r)
)
(r− rc)

)
d2r

=− ∑
p∈∂V

np×

(∫
p

(
M ·B(r)

)
(r− rc) d2r

)
(18)

where rc represents the center of mass of the magnet, the third line
is obtained using Equation (3), the fourth line is obtained using
the vector identity, ∇× (ψv) = ψ(∇×v)+∇ψ× v, the fifth line
is obtained through the alternate form of Gauss’ theorem used for
Equation (17), and the last line is derived as the torque is integrated
over the polyhedral magnet’s surface.

Our method deals with magnets represented in polygon meshes.
A and B are defined over the magnet’s boundary. Using A and B,
F, T and T are integrated over the boundary. In these senses, we
name our method Magnetic Boundary Method (MBM).

Equations (9) and (11) (for A and B, respectively) do not re-
quire sampling and are computed at O(1) time. Note that, in Equa-
tions (16) through (18), the degrees of the integrals are all reduced
from three to two. Due to difficulty in transforming the boundary
integrals into closed-form expressions, they are calculated through
numerical integration by sampling evaluation points on the bound-
ary.

4.3. Magnetic Induction

Kim et al. [KPH18] proposed magnetization dynamics, where a
magnet is decomposed into magnetic cells, two submagnetizations
are computed in each cell, and their average is taken as the cell’s
magnetization. For computing submagnetizations, they adopt what
is called effective magnetic field, Heff. Its simple form is expressed
as follows:

Heff =
1
µ0

B−DM (19)

where D is the self-demagnetizing tensor introduced in Equa-
tion (2). Recall that D depends on the magnet body’s shape. Kim
et al. [KPH18] assume spherical cells such that D is analytically

defined to be
1
3

I, where I is the identity matrix. Given Heff evalu-
ated at each cell’s center, the Landau-Lifshitz-Gilbert (LLG) equa-
tion [Gil55] is used to simulate each submagnetization’s dynamics:

dMi

dt
=− γ

1+α2

(
Mi×

(
Heff +α(Mi×Heff)

))
(20)

where Mi represents a submagnetization, γ is the gyromagnetic ra-
tio, and α is the material-specific damping constant.

In order to implement magnetic induction, we adopt the magne-
tization dynamics. Unlike Kim et al. [KPH18], however, we do not
decompose a magnet into cells but assign two submagnetizations
to the entire body of a magnet. Our MBM evaluates Equation (19)
at the magnet’s center of mass and then uses Equation (20) to com-
pute submagnetizations. Note that the magnet may have an arbi-
trary shape. Then, how do we define D for the magnet? The answer
is surprisingly simple.

In Kim et al. [KPH18], D is set to
1
3

I, and then M is computed
via the LLG equation. As proven by Kim et al., the LLG equation
converges over time such that the resulting M satisfies Equation (2),

i.e., M =
3
µ0

B for every cell. This shows that D works simply as a

“control parameter” that relates B and M.

In MBM, the magnet that is assigned two submagnetizations
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Algorithm 1 Magnet simulation

1: for all pairs of magnets do
2: Compute distance between the magnets
3: repeat
4: for all pairs of magnets do
5: if distance < threshold then
6: Compute B using Equation (11)
7: else
8: Compute B using Equation (1)
9: for all magnets do

10: Compute Heff using Equation (19)
11: Update magnetization via Equation (20)
12: until all magnetizations converge
13: for all pairs of magnets do
14: if distance < threshold then
15: Compute A using Equation (9)
16: Compute B using Equation (11)
17: Compute F using Equation (16)
18: Compute T using Equation (17)
19: Compute T using Equation (18)
20: else
21: Sample magnetic moments from the magnet
22: Compute F using Equation (3)
23: Compute T using Equation (4)
24: Compute T in a classic manner

may have an arbitrary shape. If appropriately adjusted regardless
of the shape, however, D can play the same role of the control pa-
rameter that relates B and M. In the current implementation, D is

heuristically set to
1
k

I, where k is a user-defined value. For exam-
ple, k can be made larger to express stronger magnetic induction,
i.e., larger M.

5. Implementation

As discussed in Section 1, the magnetic forces and torques in EDM
become overly stronger (than the exact solutions) if two magnets
are in close proximity. If they are sufficiently far apart, however,
EDM can calculate the magnetic forces and torques with a very
small number of magnetic moments, and the calculated forces and
torques are almost the same as MBM’s, as will be shown in Sec-
tion 6.1. This implies that the overall performance of EDM excels
that of MBM if two magnets are not close. Therefore, our imple-
mentation chooses between MBM and EDM based on the distance
between two magnets.

The distance used to choose between MBM and EDM is mea-
sured between two magnets’ bounding spheres, whose centers are
their centers of mass. If it is greater than the bounding sphere ra-
dius, EDM is chosen. Otherwise MBM is chosen.

Algorithm 1 shows our magnet simulation steps. We first com-
pute the distance between two magnets’ bounding spheres, whose
centers are their centers of mass. If it is greater than the bounding
sphere radius, i.e., if two magnets are close to each other, we com-
pute the magnetic flux density, B, with MBM, which is more accu-

rate and robust than EDM. Otherwise, we compute B with EDM,
which shows comparable accuracy and higher efficiency when the
magnets are sufficiently far apart.

Algorithm 1 shows our magnet simulation steps. We first com-
pute the distances between the magnets. If two magnets are close to
each other, we compute the magnetic flux density, B, with MBM,
which is more accurate and robust than EDM. Otherwise, we com-
pute B with EDM, which shows comparable accuracy and higher
efficiency when the magnets are sufficiently far apart. Then, the
effective magnetic field, Heff, is computed using B, and all magne-
tizations are updated. This process is repeated until all magnetiza-
tions converge. Finally, we compute the magnetic forces (F), mag-
netic torques (T) and mechanical torques (T ) for every pair of mag-
nets. For this, we also choose between MBM and EDM based on
the distance between the magnets. (The distance used to choose be-
tween MBM and EDM is measured between two magnets’ bound-
ing spheres, whose centers are their centers of mass. If it is greater
than the bounding sphere radius, EDM is chosen. Otherwise MBM
is chosen.)

For a step of rigid-body simulation, Algorithm 1 is first run to
determine F, T and T for each magnet. Then, they are used as the
external forces and torques exerted on the magnet.

Let us discuss more details on MBM implementation. When a
magnet is represented in a closed polygon mesh, its edge is shared
by two polygons. Computing A (in Equation (9)) and B (in Equa-
tion (11)) requires Wp(r) (in Equation (12)) and∇Wp(r) (in Equa-
tion (13)) to be evaluated. The summation terms in Wp(r) and
∇Wp(r) are defined with respect to edges (e ∈ ∂p) and contain
ωe(r) (defined in Equation (14)). Therefore, ωe(r) is evaluated
twice when A is computed. It is also the case when B is computed.
Since it is time-consuming to compute a logarithmic function in
Equation (14), ωe(r) evaluated for one polygon is stored and then
reused for the other polygon.

Note that ωe(r) may diverge if r gets very close to the edge. If r
lies on the edge, ωe(r) becomes singular. In these cases, we smooth
ωe(r) by adding a small positive value, ε, to the denominator of
Equation (14). In reality, however, these cases seldom happen. In
our experiments, smoothing with ε was not done at all.

6. Experiment Results and Discussions

Our experiments are made with Intel Core i7-8700 3.20 GHz CPU
and 32 GB memory. The rigid-body simulation is based on the
open-source library, Bullet Physics [Cou15], and all scenes are ren-
dered with Mitsuba [Jak10].

6.1. Mathematical Evaluation

Consider two cubic magnets shown in Fig. 4-(a), each with the di-
mensions of 1 cm3 and the magnetic flux density of 1 tesla. Given
the distance, d, between their opposing faces, the magnetic forces
are calculated by EDM and MBM respectively. For EDM, the algo-
rithm of Thomaszewski et al. [TGPS08] is implemented, and each
cube is regularly sampled by n3 magnetic moments. We call n the
sampling rate. In MBM, each of six faces of a magnet is regularly
sampled by n2 points. Thanks to Newton’s third law of motion, the
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Figure 4: Experiments with two aligned magnets. (a) The cu-
bic magnets are separated by d. (b) The forces computed using
EDM [TGPS08] and our method, MBM. The MBM force becomes
zero (due to its symmetry) when two magnets perfectly overlap, i.e.,
when d =−1.0. (c) The errors incurred by EDM and MBM. (d) The
inverse forces.

force, F, computed for one magnet is negated to define −F exerted
on the other magnet. In Fig. 4-(a), n is set to 20 for both EDM and
MBM. Fig. 4-(b) compares the magnetic forces computed by EDM
(in red) and those by MBM (in green).

Given the special configuration shown in Fig. 4-(a), where two
cubic magnets are aligned in parallel, an analytic solution for the
magnetic force is defined [AY84], and it is mathematically defined
even when the magnets interpenetrate. In Fig. 4-(b), the groundtruth
is depicted in dotted black. The MBM force curve almost com-
pletely overlaps with the groundtruth.

Fig. 4-(b) shows that the EDM forces are almost identical to the
MBM forces when d is positive and large. When d is close to zero,
however, the EDM forces are excessively strong. Fig. 5-(c) depicts
the errors of the EDM and MBM forces against the groundtruth
when d ≥ 0.

Fig. 4-(d) shows the inverse forces when d < 0, i.e., when two
magnets penetrate each other. The EDM forces diverge due to close
proximity of magnetic moments and the forces are not even defined
at their singularities.

Fig. 5-(a) depicts how the sampling rate, n, affects the magnetic
forces in MBM. It is observed that the MBM forces do not heav-
ily depend on n, i.e., the MBM forces can be computed properly
with small n. Shown on the left in Fig. 5-(b) is the closeup view
of the MBM force curves within the dotted rectangle in Fig. 5-(a).
Compare the magnitudes of two forces computed when d = 0.02:
30.33N (when n = 2) vs. 28.68N (when n = 20). The former is
5.8% greater than the latter.

Fig. 5-(c) depicts the EDM forces. The closeup view shown on
the right of Fig. 5-(b) reveals that the force computed when n = 2
is 25.4% greater than that computed when n = 20. EDM is more
sensitive to the sampling rate than MBM. In order to obtain accu-
rate forces in EDM, it is required to increase the sampling rate, i.e.,
to use a larger number of magnetic moments. (Note however that it
helps only when d ≥ 0. It does not help if d < 0. As the sampling
rate is increased, the magnetic moments are more likely to be close
to each other, aggravating the instability problem.)

As presented in Algorithm 1 of Section 5, our implementation
chooses between MBM and EDM based on the distance between
two magnets. In Fig. 5-(c), observe the EDM curves where d is
large. The forces are not sensitive to the sampling rate and are
accurately calculated even with a very small number of magnetic
moments. This validates our implementation strategy of choosing
EDM if the distance between magnets is large enough.

Recall that, to compute magnetic forces, the evaluation on the
boundary of one magnet is required in MBM while the volumetric
evaluation between two magnets is required in EDM. In our exper-
iments, both EDM and MBM compute forces using a single thread.
In the experiment results reported in Fig. 4, where n = 20, it takes
about 4385 milliseconds to compute the magnetic forces in EDM
whereas it takes about 7 milliseconds in MBM.

6.2. Simulation

This subsection compares the simulation results obtained by our
implementation (which combines EDM and MBM) and the work
of Kim et al. [KPH18], which is the state of the art in EDM. All
experiment results can be also found in the attached video.

Kim et al.’s work is implemented to control the sampling
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Figure 5: Magnetic forces computed with various sampling rates.
(a) The MBM forces are computed with n2 points sampled from
each square face. (b) The closeup views of MBM and EDM force
curves around where d = 0.02. (c) The EDM forces are computed
with n3 magnetic moments sampled from each cube.

rate based on the distance between magnets. As the distance in-
creases, the sampling rate is decreased. When “our implementa-
tion” chooses EDM (between EDM and MBM) at a certain dis-
tance, its sampling rate is made identical to that of Kim et al.’s im-
plementation used at the same distance. This is for fair comparisons
of our and Kim et al.’s implementations.

Fig. 6-(a) shows the configuration presented in Fig. 4-(a), but the
red magnet is fixed on the ground to attract the blue one. Initially,
they are separated by 1cm. The magnets are very strong, and the
attracted blue magnet penetrates the red one, as shown in Fig. 6-
(b). Fig. 6-(c) shows the result of EDM. The instability problem
is caused by excessive magnetic forces and torques. In contrast,
Fig. 6-(d) shows that our MBM handles the penetration state with-

Table 1: Performance data of MBM in Fig. 6. Tm represents the
elapsed time (in milliseconds) on magnet simulation, where the
time step size of the rigid-body simulation is set to 10 milliseconds.

n # of samples in total Tm

2 24 0.12
5 150 0.36
10 600 0.89
20 2400 3.32

out suffering from instability and properly pushes the blue magnet
outwards.

In Fig. 6-(d), the sampling rate n is set to 20. However, the cubic
magnets can be naturally simulated with significantly decreased n,
as can be found in the attached video. Table 1 reports the MBM
performances measured with different sampling rates. When n =
10, for example, 102 points are regularly sampled from each of
the cubic magnet’s six faces and therefore the total sample count
becomes 600 (102 × 6). The elapsed time on magnet simulation,
Tm, increases in general linearly with the sample count.

Fig. 7-(a) shows the initial state of a group of permanent mag-
nets, which are uniformly separated in the air. The magnets are very
strong to be stacked in the air, as shown in Fig. 7-(b), and penetrate
each other. Fig. 7-(c) shows the unstable simulation result gener-
ated by EDM. In contrast, MBM produces stable motions of the
stacked magnets, as shown in Fig. 7-(d), where the magnets have
landed on the ground.

Fig. 8-(a) shows the initial state of a bar magnet (a permanent
magnet) and paperclips (induced magnets). The thin and sharp pa-
perclips are likely to penetrate each other (due to their torques) as
well as the bar magnet. When the magnetic moments are very close
to each other, EDM generates excessive magnetic fields. Conse-
quently, the paperclips’ magnetizations are hard to converge, and
excessive magnetic forces and torques are generated. Fig. 8-(b)
shows the resulting unstable simulation. In contrast, the magnetic
fields generated by MBM are bounded enough for magnetizations
to converge. Consequently, the magnetic forces and torques do not
diverge. See our implementation’s result in Fig. 8-(c).

Fig. 9 shows that a huge crane (a permanent magnet) attracts
metal junks (induced magnets) of complex shapes. Despite the wide
spectrum of the shape complexities, the metal junks are attracted to
the crane and are also stuck to each other stably. (Fig. 1 already
showed that the binderclips with thin, sharp and complex shape
features are stably simulated.)

The performances measured in all experiments are listed in Ta-
ble 2, where Tm is the elapsed time on magnet simulation, and Tr is
that on rigid-body simulation with the time step size ∆t. Ours indi-
cates our implementation that combines EDM and MBM whereas
EDM means the implementation of Kim et al. [KPH18]. The sam-
ple counts are also listed in the table. For example, “Fig. 6 (EDM)”
uses 2000 samples as each of two cubes is sampled by 103 mag-
netic moments. Unlike all magnets in Fig. 6 and Fig. 7, the induced
magnets in Fig. 1, Fig. 8 and Fig. 9 are irregularly sampled because
it is impossible to sample their arbitrary shapes regularly.
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(a) (b) (c) (d)

Figure 6: Two strong permanent magnets. (a) Initially, the distance d is set to one. (b) The magnets are very strong to penetrate each other.
(c) In EDM, the magnetic forces diverge, producing unstable simulation results. (d) Our MBM produces proper magnetic forces to handle
the penetration stably.

(a) (b) (c) (d)

Figure 7: Stacked permanent magnets. (a) Initial state. (b) An intermediate simulation result: The magnets are strong enough to be stacked
in the air. (c) In EDM, the excessively strong forces and torques cannot be prevented. (d) MBM produces stable simulation results.

(a) (b) (c)

Figure 8: Paperclips are magnetized and attracted by the bar magnet. The paperclips also attract each other. (a) Initial state. (b) In EDM,
the excessive forces and torques cannot be prevented. (c) MBM produces stable simulation results.

As presented earlier with Table 1 and the attached video, Ours
can simulate naturally the cubic magnets in Fig. 6 with small n,
e.g., even when n = 2. “Fig. 6 (Ours)” in Table 2 reports the per-
formance measured when n = 10. Even though the sampling rate
is unnecessarily high, Tm consumed by Ours (0.8 milliseconds) is
about 29 times smaller than that consumed by EDM (23 millisec-
onds). It is mainly due to the time complexity differences: O(n2)
in MBM vs. O(n6) in EDM. Similar discussions can be made be-
tween “Fig. 7 (EDM)” and “Fig. 7 (Ours).” Tm of Ours is 93 times
smaller than that of EDM.

It is worth noting that a considerably large number of samples
is necessary for “Fig. 8 (Ours).” If the sample count is overly de-

creased, numerical errors may be accumulated due to the irregular
normals of the paperclips’ high-frequency surfaces. (Our work’s
limitation related to this issue will be discussed in Section 7.) De-
spite the large sample count, however, Tm of “Fig. 8 (Ours)” is
about 57 times smaller than that of “Fig. 8 (EDM).” Similar discus-
sions can be made between “Fig. 1 (EDM)” and “Fig. 1 (Ours).”

7. Conclusions and Future Work

We presented a novel method for stable simulations of rigid mag-
nets. Our method adopts analytic solutions for the magnets’ mag-
netic vector potentials and flux densities. Because the solutions are
bounded, the magnetic forces, magnetic torques and mechanical
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(a) (b) (c)

Figure 9: The huge crane magnet pulls up the metal junks. The thin, sharp and complex materials are stably simulated by our implementation.

Table 2: Performance data. Tm, Tr and ∆t are all in milliseconds.

Scene # of samples in total Tm Tr ∆t
Fig. 1 (EDM) 29696 1961 21.8 1
Fig. 1 (Ours) 660595 242 22.1 1
Fig. 6 (EDM) 2000 (n = 10) 23 1.3 10
Fig. 6 (Ours) 600 (n = 10) 0.8 1.4 10
Fig. 7 (EDM) 31500 1302 6.0 1
Fig. 7 (Ours) 14400 14 6.0 1
Fig. 8 (EDM) 24435 510 7.0 1
Fig. 8 (Ours) 21312 9 6.9 1
Fig. 9 (Ours) 768000 564 37.1 1

torques calculated using them are also bounded. Consequently, the
resulting simulations remain stable and are robust to interpenetra-
tion of the magnets. In addition, our method integrates the forces
and torques over the magnet boundaries, and it is a significant im-
provement with respect to the time complexity compared to the ex-
isting methods.

A few possible improvements over the current implementation of
our method are listed as follows. Our method assumes that magne-
tization is uniform across the body of a magnet. If necessary, how-
ever, a magnet can be decomposed into multiple shapes such that
a distinct magnetization can be computed for each shape. On the
other hand, our current implementation uses the distance between
the magnets’ bounding spheres when choosing between EDM and
MBM. This can be replaced, for example, by the GJK distance al-
gorithm [GJK88] to increase the accuracy.

Our method has also limitations. The computation times for the
magnetic vector potential and flux density are proportional to the
edge count of the magnet’s polygon mesh for a polyhedral magnet.
Given e edges, their time complexities are O(e). In order to apply
our method to real-time applications, it may often be necessary to
decrease the edge count, i.e., the polygon mesh resolution should
be decreased. This level-of-detail approach needs to be carefully
designed so as not to compromise the simulation accuracy.

As discussed in Section 6.2, it is safe for our method to use a
small number of samples to simulate magnets of low-frequency

surfaces, but a considerably large number of samples is necessary
for stably simulating magnets of high-frequency surfaces. Fortu-
nately, the large sample count does not seriously degrade the perfor-
mances, as shown in Table 2. Unfortunately, the appropriate sam-
pling count should be determined by trial and error. For our method
to be applied to a wide range of applications, an auto-setting tech-
nique needs to be developed to determine the optimal sample count.
These limitations make up our future work.
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A. Closed-form Expressions of Wp(r) and∇Wp(r)

In Fig. 10-(a), the polygon, p, is parallel to the xy-plane, and r is
set to (∆x,∆y,∆z)T . Let r′ denote the length of r. Then, Wp(r) can
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Figure 10: A polygon parallel to the xy-plane. (a) The polygon
normal is denoted as np, and r is arbitrarily set to (∆x,∆y,∆z)T .
(b) Top view of the polygon, where rp is the projection of r onto p’s
plane, and R1 and R2 are the ends of the polygon’s edge, e.

be written as follows:

Wp(r) =
∫
p

d p
r′

=
∫
p

(
r′2−∆x2

r′3
+

r′2−∆y2

r′3

)
d p−∆z

∫
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∆z

r′3
d p

=
∫
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(
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∂∆x
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+
∂

∂∆y
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)
−∆z

∫
p
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r′3
d p

=
∫
p

(
∂

∂∆x
∆x
r′

+
∂

∂∆y
∆y
r′

)
− (rp− r) ·np

∫
p

∆z

r′3
d p (21)

where the second integral at the last line represents the signed
solid angle, Ωp(r), with respect to p, which was defined in Equa-
tion (15). On the other hand, the first integral at the last line can be
transformed into the integral over the closed curve, using Green’s
theorem. Then, Wp(r) is rewritten as follows:

Wp(r) =
∮
∂p

1
r′
(∆xd∆y−∆yd∆x)−Ωp(r)(rp− r) ·np

= ∑
e∈∂p

∫
e

(
1
r′
(∆xd∆y−∆yd∆x)

)
−Ωp(r)(rp− r) ·np

(22)

Let We(r) denote the integral at the last line of Equation (22). In
Fig. 10-(b), e connects R1 and R2. Let s denote the unit vector from
R1 to R2. Then, We(r) can be rewritten as follows:

We(r) =
∫
e

ds
r′

((
∆x+ scosθ

)
sinθ−

(
∆y+ ssinθ

)
cosθ

)
=
(

∆x sinθ−∆ycosθ

)∫
e

ds
r′

= (rp ·ne)
∫
e

ds
r′

(23)

where ne is orthogonal to s and points out of p. It is clear that rp ·ne
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is identical to np× (re− r) · ue introduced in Equation (12). The
integral at the last line of Equation (23) is the same expression as
ωe(r) introduced in Equation (14), as shown in Appendix B. This
proves that Equation (21) equals Equation (12).

Next,∇Wp(r) can be written as follows:

∇Wp(r) =
∫
p

∇d2r′

r′

=
∫
p


− ∂

∂∆x
1
r′

− ∂

∂∆y
1
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− ∂
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1
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(
1
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1
r′

)
− ∆z

r′3

d2r′ (24)

Using Green’s theorem, Equation (24) can be rephrased as follows:

∇Wp(r) =


−

∮
∂p

d∆y
r′∮
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d∆x
r′∫

p
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r′3
d2r′
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− ∑
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sinθ

∫
e

ds
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∑
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cosθ
∫
e

ds
r′

Ω(r)

 (25)

The x and y components of the last line can be rewritten as follows:

∑
e∈∂p

(−sinθ,cosθ) ·ωe(r) = ∑
e∈∂p
−ωe(r)ne (26)

where−ne is identical to np×ue in Equation (13). This proves that
Equation (25) equals Equation (13).

Derivations of Wp(r) and ∇Wp(r) are based on the concept of
gravitation introduced in Werner and Scheeres [WS96], to which
readers are referred for more detail.

B. Closed-form Expression of ωe(r)

Recall that the integral at the last line of Equation (23) is identical
to ωe(r). Then, using Fig. 11, ωe(r) can be written as follows:

ωe(r) =
∫ l

0

dξ

ρ

=
∫ θ2

θ1

cscθdθ

= ln
tan(θ2/2)
tan(θ1/2)

(27)

where the second line is obtained as dξsinθ = ρdθ. When ξ = 0,
θ = θ1. When ξ = l, θ = θ2. Because θ is limited to the range

R

R₂PR₁
θ

ρ

ξ

η

Figure 11: On the ξη-plane, R1 = (0,0), R2 = (l,0), R = (u,v),
and the arbitrary point P = (ξ,0). P is on R1R2, and the length of
PR equals ρ.

between 0 and π, it is clear that the following trigonometric identity
holds:

tan
1
2

θ =

√
1

tan2 θ
+1− 1

tanθ
(28)

In addition, we can express the tangents as follows:

tanθ1 =
v
u

tanθ2 =
v

u− l

(29)

Using Equations (28) and (29), Equation (27) can be rephrased as
follows:

ωe(r) = ln
tan(θ2/2)
tan(θ1/2)

= ln

√
(u− l)2 + v2− (u− l)
√

u2 + v2−u

= ln

√
(u− l)2 + v2 +

√
u2 + v2 + l√

(u− l)2 + v2 +
√

u2 + v2− l

= ln
R1R+R2R+R1R2

R1R+R2R−R1R2
(30)

Derivation of the closed-form expression of ωe(r) is based on the
concept of potential introduced in Macmillan [Mac58], to which
readers are referred for more detail.
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