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The goal of this paper is to simulate the interactions between magnetic
objects in a physically correct way. The simulation scheme is based on
magnetization dynamics, which describes the temporal change of magnetic
moments. For magnetization dynamics, the Landau-Lifshitz-Gilbert equation
is adopted, which is widely used in micromagnetics. Through effectively-
designed novel models of magnets, it is extended into the macro scale so as
to be combined with real-time rigid-body dynamics. The overall simulation
is stable and enables us to implement mutual induction and remanence
that have not been tackled by the state-of-the-art technique in magnet
simulation. The proposed method can be applied to various fields including
magnet experiments in the virtual world.
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1 INTRODUCTION
The last three decades have seen the prosperity of physics-based
simulation in computer graphics. The results have been used in
many areas including video games, visual effects in films, and educa-
tion. A unique subfield of the physics-based simulation is focused on
magnets. In the pioneering work of [Thomaszewski et al. 2008], the
force and torque between magnetic objects were computed using
the Maxwell’s equations and integrated into rigid-body dynamics.
Thanks to their efforts, magnetic simulation has recently begun to
be adopted in education and art, as illustrated in Fig. 1. However,
the potential demand of magnetic simulation requires the current
techniques to advance one step further and address a few critical
issues:
• Magnetic mutual induction: The magnetic induction of an ob-
ject is determined by all magnetic objects in the environment.
Fig. 2-(a) shows an example captured in a real-world experiment.
Not only the bar magnet but also the iron ball in direct contact
with it induces the second ball. The other balls are similarly in-
duced by the balls preceding them and the bar magnet. Thus, we

Authors’ addresses: Seung-wook Kim, Korea University, wook0249@korea.ac.kr; Sun
Young Park, Korea University, iamsun0720@korea.ac.kr; JungHyun Han, Korea Univer-
sity, jhan@korea.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/8-ART121 $15.00
https://doi.org/10.1145/3197517.3201402

(a) (b)

Fig. 1. The state of the art in magnet simulation: (a) Magnetic field lines
and compasses [Park et al. 2016]. (b) Iron filing art [Yoon et al. 2014].

have a chain of induced magnets. Unfortunately, such mutual
induction has not been tackled by the state-of-the-art techniques.

• Magnetic remanence: Many induced objects have a tendency
of preserving magnetization for a certain period of time. Fig. 2-
(b) shows a well-known example of first magnetizing a metallic
material and then using its remanence to magnetize other objects.
There has been no attempt to implement this phenomenon.

• Simulation stability: A magnetic object exposed to a magnetic
field is accelerated by a magnetic force. In general, the closer the
magnetic objects are to each other, the more induced they become,
and thus the magnetic forces that they produce become stronger.
This often causes the magnetic objects to interpenetrate each
other and produce much stronger magnetic forces, which eventu-
ally make the simulation unstable. In order to resolve this problem,
a smaller time step size can be used in the rigid-body simulation.
However, this is not appropriate for real-time simulation.

(a) (b)

Fig. 2. Indispensable components of virtual magnet experiments: (a) Mutual
induction. (b) Remanence.
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While we were building a magnetic simulation system, we en-
countered various difficulties and realized the critical issues listed
above. Searching for solutions, we have focused on the core sub-
jects in magnetics, which have been proven to be physically correct.
The first step was to adopt the Landau-Lifshitz-Gilbert (LLG) equa-
tion, which describes magnetization dynamics in micromagnetics. It
asserts that magnetization of an object does not increase above a
certain point but is saturated. This property of saturated magnetiza-
tion helps prevent the magnetic forces from becoming excessively
large. For the LLG equation to work at the macro scale, we have
designed novel magnet models and developed efficient algorithms
which work on them.

The LLG equation is proven to have a special structure, which
guarantees non-divergence of the magnetic energy. Together with
the intrinsic property of saturated magnetization, the structure
ensures the stable simulation of rigid bodies. This is a remarkable
strength of the LLG equation because divergence is the main barrier
to mutual induction, as pointed out by [Thomaszewski et al. 2008].
Our algorithms process the permanent magnets and the objects to
be induced by them in a uniform fashion, and the LLG equation
enables successful implementation of mutual induction.
If magnetization were computed from scratch for every step of

the rigid-body simulation, the phenomenon of magnetic remanence
could not be implemented. Based on the novel models of magnets,
our algorithms compute the change of magnetization over time,
making it possible to implement magnetic remanence.

2 RELATED WORK
A material that can be strongly induced by magnetic fields is called
a ferromagnet. Ferromagnetism has been extensively studied in
computational and applied physics, material science, electrical en-
gineering, etc. According to the spatial scales, it is classified into
macroscopic and microscopic categories. The macro-scale ferromag-
netism uses the so-called phenomenological constitutive relations,
which describe the evolution of magnetization [Kruzík and Prohl
2006]. Well-known is the linear constitutive relation, which asserts
that magnetization of a magnetic object is linearly proportional to
the magnetic field applied to it [Aharoni 2000]. Due to its excessive
approximation, however, this relation often fails to fully account
for the principles of ferromagnetism.
A lot of works on the micro-scale ferromagnetism use the LLG

equation for the time evolution of magnetization in order to ob-
tain the magnetization in equilibrium through integration. Such a
magnetization dynamics is widely studied especially in the field of
magnetic recording. A good survey on the LLG equation can be
found in [Lakshmanan 2011].
The work of [Thomaszewski et al. 2008] has been the only one

in the computer graphics area for magnetic interaction integrated
with rigid-body simulation. Based on the linear constitutive relation
in magnetostatic environments, magnetization was determined by
the magnetic fields generated by permanent magnets to produce
magnetic forces and torques. The proposed method did not address
the issues discussed in Section 1.
In the domain of magnetic simulation of non-rigid elements,

[Ishikawa et al. 2013] simulated magnetic fluids using the Smoothed

Particle Hydrodynamics (SPH) method [Müller et al. 2003]. They
expressed spikes at the surface of the magnetic fluid using an en-
ergy minimization scheme. There have been a few notable efforts
in the context of magnetostatic visualization: Particles were used to
express magnetic field lines [Klein and Ertl 2004], magnetic fields
were visualized revealing the topology of magnetic flux [Bachthaler
et al. 2012], magnetic field lines were visualized for virtual science
classes [Park et al. 2016], and iron filings were graphically generated
in an artistic approach [Yoon et al. 2014].

Magnets have been used in animations such as Robots, Toy Story
3, and Despicable Me 2, and also in visual effects for Spider-Man
2, Transformers: Age of Extinction, Under the Dome, etc. Interest-
ingly, Robots presented the remanence effect, which was apparently
implemented by hand.

3 MICROMAGNETICS
Amagnet produces amagnetic field. If a material is strongly induced
along the direction of the magnetic field, it is named a ferromagnet.
In contrast, a paramagnet is weakly induced. A ferromagnet is called
hard if it tends to preserve its magnetization. Otherwise, it is called
soft. The examples of hard ferromagnet are alnico and ferrite, those
of soft ferromagnet are iron and nickel, and those of paramagnet
are aluminum and magnesium.
A permanent magnet is manufactured from a hard ferromagnet

through a specialized process under a strong magnetic field. This
paper focuses on interactions between permanent magnets and soft
ferromagnets. The soft ferromagnets are induced by the permanent
magnets, and they all undergo rigid-body motions.

3.1 Magnetic Moment and Magnetization
The vector quantities that cause the rigid-body motion of a magnetic
object are themagnetic dipole moments or simplymagnetic moments.
When an object that has electric properties (such as electron and the
Earth) moves or rotates, it produces an electric current which creates
a magnetic moment. Given a distribution of the electric current
density J, the magnetic moment µ is defined as follows [Jackson
1999]:

µ =
1
2

∫
V

(x − p) × J(x − p)d3x (1)

where µ is defined at p that represents an arbitrary point in volume
V . The magnetic moment density, i.e., the magnetic moment per
unit volume, is namedmagnetization. It is also a vector quantity and
is denoted asM.

The key element that distinguishes between hard and soft ferro-
magnets is the magnetic anisotropy, which refers to the directional
dependence of a material’s magnetic properties [Aharoni 2000].
A hard ferromagnet has strong magnetic anisotropy regardless of
its shape whereas a soft ferromagnet has no or weak magnetic
anisotropy. An easy axis is referred to as an energetically favor-
able direction of spontaneous magnetization. A ferromagnet with
magnetic anisotropy has a set of easy axes, and it tends to align its
magnetization along an easy axis.
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Fig. 3. M moves precessionally (along the red arrow) around Heff, and its
trajectory is a circle (in dotted red). When the damping motion (along the
blue arrow) is added, the combined motion is a spiral (in dotted green)
centered about Heff.

3.2 Effective Magnetic Field
Consider a point q in space. The effective magnetic field, Heff, at q is
defined as the sum of four components [Nakatani et al. 1989]:

Heff = HE + HD + HX + HK (2)

where HE is the external field such as the Earth’s, HD is the demag-
netizing field, HX is the exchange field, and HK is the magnetocrys-
talline anisotropy field.
HD describes the contributions from all magnetic moments in the

environment. Given n magnetic moments, each denoted as µi , HD
at q is defined as follows [Jackson 1999]:

HD =
1
4π

n∑
i=1

(
3ri

(
ri · µi

)
∥ri ∥5

−
µi

∥ri ∥3

)
(3)

where ri is the vector from the position of µi to q.
The exchange field, HX, is generated by the quantum mechanical

effect. It is related to the Laplacian of the magnetic moment’s axial
components and plays an important role in micromagnetics. In
contrast, the distances between magnetic moments in the macro-
scale model are usually too large forHX to bring about nonnegligible
effects. Therefore, we ignore HX in our macro-scale simulation.
The magnetocrystalline anisotropy determines its own easy axes

in a ferromagnet. If the direction of magnetization M is different
from all easy axes, HK is generated. It drives M to get aligned with
an easy axis. Section 3.3 will give a detailed discussion of how HK
works.

3.3 Landau-Lifshitz-Gilbert Equation
Landau-Lifshitz-Gilbert (LLG) equation [Gilbert 1955] describes the
magnetization dynamics, i.e., the dynamics of magnetic moments. It
is widely used in micromagnetics to update the magnetic moments
in an extremely large number of infinitesimally small magnetic do-
mains. In the LLG equation, the change over time of magnetization,
M, exposed to Heff is described as follows [Lakshmanan 2011]:

dM
dt
= −γ

(
M × Heff − η

(
M ×

dM
dt

))
(4)

where γ is the gyromagnetic ratio and η is the material-specific
damping constant. The first and second terms inside of the outer
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Fig. 4. Heff andM: (a) Initial configuration. (b)M and Heff are updated. (c)
Final configuration.

parenthesis in Equation (4) correspond respectively to the preces-
sional motion and damping motion of M illustrated in Fig. 3.M will
be in equilibrium either if it is aligned with Heff or if Heff = 0.

Let us dot-multiply both sides of Equation (4) withM:

dM
dt

·M = −γ

(
M × Heff − η

(
M ×

dM
dt

))
·M (5)

Obviously the right-hand side becomes zero, and therefore dM
dt ·M =

0, which implies that the magnitude of M remains constant over
time.

Using the above observation, let us now present howHeff updates
M. For a uniaxially anisotropic ferromagnet, HK is defined to be
orthogonal to its easy axis [Nakatani et al. 1989]. If the easy axis is
the z-axis, for example, HK is defined in the plane spanned by the x-
and y-axes. WhenM =

(
Mx ,My ,Mz

)T , HK is defined as follows:

HK = −
2Ku
Ms

©­«
Mx
My
0

ª®¬ (6)

where Ku is the anisotropy constant andMs denotes ∥M∥.
Assume that HK is the dominant component of Heff, i.e., Heff ≃

HK. Without loss of generality, Heff can then be considered to lie
in the xy-plane, as illustrated in Fig. 4-(a). Obviously, the angle, θ ,
between M and Heff is obtuse.

Due to the damping motion presented in Equation (4) and Fig. 3, θ
will decrease. It implies thatMz will increase whereas

√
Mx

2 +My
2

will decrease because the magnitude of M remains constant. Conse-
quently,M gets closer to the z-axis. See Fig. 4-(b).
On the other hand, changedMx andMy will update HK, which

will then update Heff. Consequently, the magnitude of Heff will
decrease, being confined in the xy-plane. This is also illustrated in
Fig. 4-(b).

When these steps are repeated, Heff will keep decreasing to zero,
and M will be aligned with the z-axis, which is the easy axis. See
Fig. 4-(c).

3.4 Numerical Integration for Magnetization Dynamics
Let us normalizeM and denote it asm, i.e.,m = M/Ms , whereMs =

∥M∥. The LLG equation presented in Equation (4) then becomes

dm
dt
= −γ

(
m × Heff − ηMs

(
m ×

dm
dt

))
(7)
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Fig. 5. Permanent magnets (shaded) and soft ferromagnets: (a) Every magnetic object is decomposed into spherical cells. (b) In a soft ferromagnet, multiple
instances of the normalized magnetic moment are assigned to a cell. (c) The magnetic moments are rotated through simulation.

As proposed by [Brown 1979], Equation (7) can be transformed into
a closed form:

dm
dt
= −

γ

1 + α2
(m ×H) (8)

where α andH are defined as follows:
α = γηMs

H = Heff + α(m × Heff)
(9)

Using Equation (8), the rotation of the magnetic moment can be
simulated in a numerical way. For numerical integration, consider
the mid-point method [Serpico et al. 2001]. For the

(
i + 1

2

)
-th step

of the simulation, the first order approximations of m and dm
dt are

defined as follows:

mi+ 1
2 =

mi+1 +mi

2
(10)(

dm
dt

)i+ 1
2
=

mi+1 −mi

∆t
(11)

Equations (10) and (11) are inserted into Equation (8):

mi+1 −mi = −
γ∆t

2
(
1 + α2

) ((
mi+1 +mi

)
×Hi+ 1

2

)
(12)

where the first order approximation ofHi+ 1
2 is defined as follows:

Hi+ 1
2 =

Hi+1 +Hi

2

=

(
2Hi −Hi−1

)
+Hi

2

=
3
2
Hi −

1
2
Hi−1 (13)

The mid-point method works when i > 0. When i = 0, the second-
order Runge-Kutta integration is used. It is straightforward to show
that the magnitude of m is preserved during the integration. If we
dot-multiply both sides of Equation (12) with (mi+1+mi ), we obtain
the following: (

mi+1 −mi
)
·

(
mi+1 +mi

)
= 0 (14)

This leads to ∥mi ∥ = ∥mi+1∥, i.e. the magnitude of m is uncondi-
tionally preserved.

4 MACRO-SCALE MAGNETIZATION SIMULATION
The magnetics introduced in Section 3 works at the micro scale.
This section presents how to extend it into the macro scale so as
to be combined with real-time rigid-body dynamics of magnetic
objects.

4.1 Cell Decomposition and Magnetic Moments
We decompose each magnetic object into a set of uniform spherical
cells [Thomaszewski et al. 2008]. Fig. 5-(a) shows an example with
two permanent magnets (P1 and P2) and two soft ferromagnets (S1
and S2).

First of all, consider a permanent magnet. Let V denote its cell’s
volume. Assuming that a cell is uniformly magnetized across V , its
net magnetic moment, µ, defined at the cell’s center is expressed
asMV , whereM denotes the magnetization of the cell.M is estab-
lished when the permanent magnet is manufactured. It is fixed, and
therefore every cell of a permanent magnet is assigned the same µ.
Similarly, µ of a soft ferromagnet’s cell is defined at the cell’s

center. In contrast to permanent magnets, however, µ in a soft fer-
romagnet is dynamically aligned along the effective magnetic field,
and therefore µ may be different across the cells. We will present
how to compute µ of each cell, equivalently its magnetizationM.

4.2 Effective Magnetic Field at the Macro Scale
Magnetic simulation at the macro scale requires iterations of up-
dating the effective magnetic field Heff and magnetic moment µ (or
magnetization M) for each cell. Consider the components of Heff
presented in Equation (2). Obviously, HE remains unchanged be-
tween the micro and macro scales. In contrast,HD andHK should be
redefined. (HX is ignored in the macro-scale simulation, as discussed
in Section 3.2.)
In Equation (3), HD is specified in terms of microscopic mag-

netic moments, each defined in a nanometer-scale volume. In our
macro-scale model, a millimeter-scale cell encompasses many such
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microscopic magnetic moments. In terms of cells,HD is decomposed
into what we denote asHexo_D andHendo_D.Hexo_D is generated by
other cells in the environment.Hendo_D accounts for the interactions
between the microscopic magnetic moments “in a cell.”
Let Ci j represent the i-th magnetic object’s j-th cell, and µi j

represents the magnetic moment of Ci j . Then, HD in Equation (3)
is modified to define Hexo_D:

Hexo_D =
1
4π

∑
i

∑
j

©­­«
3ri j

(
ri j · µi j

)
∥ri j ∥5

−
µi j

∥ri j ∥3
ª®®¬ (15)

where ri j is the vector from the center of Ci j to that of the current
cell.

The magnetic field exerted on a cell is generated by all magnetic
objects in the environment, which include not only the permanent
magnets but also the induced magnets. Consider the example in
Fig. 5-(a). Once S1 is magnetized by P1 and P2, S1 applies a magnetic
field to S2 together with P1 and P2. Then, the magnetization of S2
is updated, and in return S2 applies a magnetic field to S1. This is
mutual induction. It is important to note that µi j in Equation (15)
may come from an induced magnet as well as a permanent mag-
net. Equation (15) processes both permanent and induced magnets
uniformly to support mutual induction.
In general, calculation of Hendo_D requires us to consider the

boundary conditions for the cell’s shape, which is usually costly
and bothersome. Fortunately, an analytic solution is available for
the spherical cell. Let M denote the magnetization of the cell deter-
mined at the “current iteration” of our time-stepping scheme. Then,
Hendo_D is simply defined in terms ofM [Jackson 1999]:

Hendo_D = −γDM (16)

where γD is called the demagnetizing factor. For a uniformly mag-
netized sphere, γD is proven to be 1/3 [Osborn 1945].

HK at the macro scale is defined in the same manner as at the
micro scale. Suppose that µ =

(
µx , µy , µz

)T . Given a uniaxially
anisotropic ferromagnet, the easy axis of which is the z-axis, its HK
is defined as follows:

HK = −
2Ku
MsV

©­«
µx
µy
0

ª®¬ (17)

Equation (17) just rephrases Equation (6) using the fact that µ = MV .
In summary, the effective magnetic field at the macro scale is

defined as follows:

Heff = HE + Hexo_D + Hendo_D + HK (18)

4.3 Saturated Magnetization
In Equation (18), HE and Hexo_D are caused by the magnetic mo-
ments located outside of the cell. HE + Hexo_D is called the applied
magnetic field and denoted as HA. When HA is weak, M and HA at
the macro scale are related as follows [Aharoni 2000]:

M = χHA (19)

� �

�   �

sM

M

AH

Fig. 6. M varies linearly with HA only when HA is weak. As the strength
of HA increases, the derivative of M decreases, eventually leading to the
saturated magnetization.

χ denotes the susceptibility of a material. It is determined by the
material’s intrinsic susceptibility, χi , and its shape [Cao et al. 2014]:

χ =
χi

1 + γD χi
(20)

where γD is determined by the shape of the magnetic object and is
1/3 for a spherical object. In general, χi of a ferromagnet is fairly big,
and therefore χ is approximated to 1/γD .
In the real-world measurements of magnetization, it has been

found that the magnitude of M does not increase above a material-
specific value but is saturated [Grössinger 1981]. If we ignore this
feature, M can be excessively large as HA increases, resulting in an
unstable rigid-body simulation. In principle,M and HA are related
as follows [Abbott et al. 2007]:

M =


1
γD

HA if ∥HA∥ < Hs

Ms
HA
∥HA∥

otherwise
(21)

where Hs represents the minimum strength of HA to make the
magnetization saturated, andMs represents the magnitude of the
‘saturated’ magnetization. Note that the definition ofMs is different
between micro and macro scales.

Fig. 6 depicts the general magnetization curve [Grössinger 1981],
which is determined by various material-specific factors (including
the inhomogeneities and anisotropy) of a ferromagnet as well as
Equation (21). Section 3.3 showed that, even though the direction
of M changes, its magnitude remains constant over time. It is the
microscopic view, i.e., it is for a magnetic moment defined in a
nanometer-scale volume. In contrast, Fig. 6 shows the macroscopic
view: The magnitude ofM is not constant. Consider a cell, where
many microscopic moments reside. If their vector sum is zero, for
example, the cell’sM becomes zero.

4.4 Magnet Modeling and Simulation
A soft ferromagnet is decomposed into cells. In [Thomaszewski et al.
2008], the magnetic moment of a cell was analytically computed
from scratch at each step of rigid-body simulation. In contrast, we
first assign multiple instances of the ‘normalized’ magnetic moment,
each denoted asmi , to a cell and simulate the dynamics ofmi using
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Fig. 7. Iterations of updating Heff, m1, and m2.
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Fig. 8. Iterations of updating Heff,m1, andm2: (a) The initial vector for Heff
is increased. (b) Heff is further increased.

the LLG equation. Note that mi corresponds to the normalized
magnetization, m, presented in Section 3.4.

Why not a single magnetic moment in a cell? The direction of the
magnetic moment may change but its magnitude remains constant,
as discussed in Section 3.3, and consequently the magnetization
curve presented in Fig. 6 cannot be implemented in a cell.
Fig. 5-(b) shows the simplest implementation of assigning two

normalized magnetic moments to a cell. (Their initial directions
are randomly chosen across the cells. Our experimental results
show that the initial directions make an insignificant impact on the
simulation results.) Let us denote the magnetic moments bym1 and
m2. The directions of m1 and m2 are initialized to be opposite, i.e.,
m1 = −m2. As M = 1

2 (m1 + m2)Ms , the initial orientations of m1
and m2 make M zero, implying that the object is not magnetized.
For each iteration of magnetic simulation, the directions of m1 and
m2 will be updated by Heff, as depicted in Fig. 5-(c).

For the sake of simplicity, consider a single-cell isotropic (HK = 0)
object exposed toHE. Assume that there is no other magnetic object
in the environment. Then, Hexo_D = 0 and HA = HE. Initially,
Heff = HE. Shown in Fig. 7-(a) are initial Heff, m1, and m2. Fig. 7-(b)
showsm1 andm2 updated by Heff. They are more aligned with Heff.
Then, M is no longer zero. It generates Hendo_D, which is defined
to be − 1

3M, as presented in Section 4.2. Hendo_D is added to Heff,
which is then decreased, as illustrated in Fig. 7-(b).

Fig. 7-(c) shows the next iteration’s result. In Fig. 7-(d), Heff be-
comes zero, leading to equilibrium. The simulation is terminated,
and M is no longer updated. Observe that, in Fig. 7-(d), m1 and
m2 are not of the same direction.M does not reach the maximum
magnitude,Ms .

Now suppose that HE is increased. Fig. 8-(a) shows how Heff and
the magnetic moments change. Observe that, when the simulation

< <

� �

�   �

sM

M

AH�   �AH3�   �AH2�   �AH1

Fig. 9. Three instances of HA represent the cases presented in Fig. 7, Fig. 8-
(a), and Fig. 8-(b) in order.

is completed, M in Fig. 8-(a) is larger than that in Fig. 7. Fig. 8-(b)
shows the case when HE is further increased. As the final directions
of m1 and m2 are the same, M reaches the maximum magnitude,
Ms , i.e., the state of saturated magnetization. Fig. 9 plots the three
examples on the magnetization curve.

Note that simulationwith the LLG equation requires pre-existence
of a magnetic moment such that its rotation is determined through
integration. Assigningmultiplemagneticmoments to a cell is the key
feature of our magnet modeling. By doing so, zero-magnetization
cell can be neatly defined, and both pre-saturation and saturation
stages presented in Fig. 9 can be implemented in a cell.

In Fig. 7 and Fig. 8, the magnetic moments initialized in a cell are
illustrated as if they were separated, just for visualization purposes.
In reality, they are located at the cell’s center, i.e. they share the
same position, and consequently they are updated by the same Heff.

Let us now refine the components of Heff for our magnet model.
Suppose that we have n magnetic moments in a cell. After a step of
magnetic simulation, the resulting magnetization,M, is defined as(

1
n

n∑
i=1

mi

)
Ms (22)

Then, Hexo_D and Hendo_D are accordingly defined. By replacing
µi j withMi jVi in Equation (15),Hexo_D is obtained. (Mi j represents
the magnetization of the i-th magnetic object’s j-th cell, and Vi
represents the cell’s volume of the i-th magnetic object.) By inserting
M into Equation (16), Hendo_D is obtained:

Hendo_D = −γDM = −γD

(
1
n

n∑
i=1

mi

)
Ms (23)

Note that, in Equation (17), MsV represents the magnitude of a
magnetic moment and therefore division byMsV is equivalent to
taking the x- and y-coordinates of the normalized magnetic moment.
In our magnet model, mi is a normalized magnetic moment per
se. As mi = (mix ,miy ,miz )

T , Equation (17) can be rephrased as
follows:

HK,i = −2Ku
©­«
mix
miy
0

ª®¬ (24)
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Algorithm 1Magnetic simulation
1: iter := 0
2: compute the demagnetizing tensor,𝒟i j
3: while error > ϵ and iter < maxIter do
4: for each magnetic moment m do
5: compute Heff
6: integrate m over the time step using Equation (12)
7: compute error
8: iter := iter + 1

Equation (24) applies independently to every magnetic moment in
a cell.
Returning to Fig. 8-(b), suppose that, after M in the cell is satu-

rated,HE becomesweaker. Then,M should be accordingly decreased.
However, the magnetic moments with the same direction cannot be
made different even though they are updated by Heff. Consequently,
M remains saturated.

This problem could be handled by restoring the magnetic moment
to its initial state. Unfortunately, this simple solution disables the
remanence effects since the history of the magnetic moment is
ignored. Our solution is to perturb themagnetic moment slightly, i.e.,
Heff is augmentedwith what we call noise field. It is a feeble magnetic
field randomly determined per magnetic moment. In the current
implementation, its magnitude is 10−6 times Heff’s. A magnetic
moment parallel or antiparallel toHeff would not be rotated without
a noise field.

Understand that eachmagnetic moment in a cell is associatedwith
its own HK and the noise field whereas HE, Hexo_D, and Hendo_D
are shared by multiple magnetic moments.

4.5 Magnetic Simulation + Rigid-body Simulation
In our magnetic simulation, the most time-consuming part is com-
puting Heff. Especially, most of the time is consumed by Hexo_D
computation. Given N magnetic moments, its time complexity is
O(N 2). Fortunately, Equation (15) can be rephrased as follows:

Hexo_D =
1
4π

∑
i

∑
j

©­­«
3ri j

(
ri j · µi j

)
∥ri j ∥5

−
µi j

∥ri j ∥3
ª®®¬

= −
1

4π ∥ri j ∥3

(
I −

3
∥ri j ∥2

ri j rTi j

)
µi j

= −𝒟i jµi j (25)

where I is the identity matrix, and 𝒟i j is called the point-function
demagnetizing tensor [Moskowitz and Della Torre 1966].𝒟i j is a
function of ri j . Because ri j remains constant for all iterations in a
rigid-body simulation step, we pre-compute𝒟i j and use it for each
iteration.

Shown in Algorithm 1 is the pseudocode of magnetic simulation.
In each step, we calculate Heff for each magnetic moment, m, and
update the rotation of m using Equation (12). For each m, the error
is defined to be ∥m × h∥, where h represents the normalized Heff.
The iterations continue until either the error sum falls below the
pre-defined threshold ϵ or the number of iterations reaches the

(d)
easy
axis (a) (c)

Hendo_DeffH
K, iH

(e)(b)

effH =                + =  endo_DH

Fig. 10. Magnetization dynamics for remanence.

pre-defined upper limit. In most cases, the magnetic equilibrium is
reached with fewer than 30 iterations.

For each step of rigid-body simulation, themagnetic simulator pre-
sented in Algorithm 1 is first run to determine the per-cell magnetic
moments. Using them, the magnetic force and torque are calculated
in the way Appendix A describes, and then the rigid-body solver is
invoked.

4.6 Magnetic Remanence
Magnetic remanence refers to the tendency of preserving magne-
tization, M, for a certain period of time. A soft ferromagnet with
remanence behaves as if it were a permanent magnet. Recall that the
magnetization of a permanent magnet is aligned with an easy axis.
The necessary condition for a soft ferromagnet to have remanence
is that its current magnetization,M, should be (nearly) aligned with
an easy axis, as illustrated in Fig. 10-(a).
When m1 and m2 are aligned with an easy axis, HK,1 and HK,2

(defined in Equation (24)) become zero, as discussed in Section 3.3.
Consequently, Heff = HA + Hendo_D for each magnetic moment in
Fig. 10-(a). Note thatHendo_D and the current magnetizationM have
the opposite directions (Equation (23)).
Suppose that HA = 0. Then, Heff becomes identical to Hendo_D,

as shown in Fig. 10-(b), and m1 and m2 will be rotated toward the
direction ofHendo_D. Consequently,m1 andm2 are not aligned with
the easy axis any longer, as shown in Fig. 10-(c). Then, HK,i revives
and again drives each magnetic moment to be aligned with the easy
axis.

Hendo_D and HK,i battle with each other. If neither of them is
dominant, we may be in quasi-equilibrium, where M is neither
saturated nor decreased continuously, i.e.,M is preserved for a while.
This represents weak remanence. If HK,i is dominant, however,
m1 and m2 will be aligned with the easy axis such that M will be
saturated. This represents strong remanence.

It is interesting to look into the case where Hendo_D is dominant,
decreasing M to zero, as illustrated in Fig. 10-(d). Because M is zero,
so is Hendo_D. Consequently Heff = HK,i . Note that, according to
Equation (24), HK,1 and HK,2 will have the same magnitude and op-
posite directions. Therefore, m1 and m2 will be kept being opposite
while making the spiral motions presented in Fig. 3. Eventually, they
will be aligned with the easy axis, as shown in Fig. 10-(e), one in the
same direction and the other in the opposite direction, keepingM
zero.
For a step in the rigid-body simulation, m1 and m2 computed

in the previous step are taken and updated. Obviously, remanence
would not be implemented without utilizing this temporal coher-
ence.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 121. Publication date: August 2018.



121:8 • Kim, Park, and Han
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(b) Ms = 5.0 × 104 A/m

Fig. 11. Relation between M and HA for a single-cell soft ferromagnet: (a) Three materials, each with different Ms , share the same γD . It determines the slope
of the curve when ∥HA ∥ < Hs . (b) Four materials, each with different γD , share the same Ms .

(a)

(b)

(c)

Fig. 12. Mutual induction: (a) Simulation with mutual induction. (b) Real-world experiment. (c) Simulation without mutual induction.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1 Validation of Magnetization Curve
In order to prove that our magnet modeling and simulation are in
accord with Equation (21), we conducted an experiment under the
same environment presented in Section 4.4, i.e., we used a single-cell
object exposed to only HE and assigned two magnetic moments to
the cell. Fig. 11 shows the simulation results. They coincide with
the theoretical values.

5.2 Mutual Induction
In Fig. 12-(a), only a single ball is initially lifted toward the magnet.
The second ball is induced by that lifted ball as well as the barmagnet,
eventually resulting in a chain of induced magnets. Fig. 12-(b) shows
the same phenomenon captured in a real-world experiment. Fig. 12-
(c) shows the result obtained by disabling mutual induction. As each
ball is induced only by the bar magnet, fewer balls are lifted toward
the bar magnet.
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(a)

(b)

Fig. 13. Magnetic shielding: (a) Wood plate. (b) Iron plate.

Mutual induction makes it possible to conduct numerous mag-
netic experiments in the virtual world. Fig. 13 shows an experiment
popularly made in science classes. A plate is inserted between a
bar magnet and an iron ball. If the plate is made of a non-magnetic
material such as wood and glass, it does not affect the magnetic in-
teraction between the bar magnet and the ball. Fig. 13-(a) shows that
the ball is lifted toward the bar magnet regardless of the existence
of the wood plate.

In contrast, if an iron plate is inserted, for example, it is induced
by the bar magnet to generate its own magnetic field, which sig-
nificantly offsets the magnetic field generated by the bar magnet.

(a)

(b)

Fig. 14. Visualization of magnetic field lines and force magnitudes: (a) Mag-
netic shielding with iron plate. (b) The magnetic field lines are in gray and
the magnetic forces’ magnitudes are in rainbow colors, VIBGYOR, where
Violet is the weakest and Red is the strongest.

(a)

(b)

Fig. 15. Different shielding objects: (a) A thin iron plate. (b) A thick plate.

Consequently, the iron ball is weakly induced and may not be lifted
toward the bar magnet. This is often called magnetic shielding. See
the left of Fig. 13-(b). As soon as we remove the plate, however, the
ball is lifted toward the magnet, as shown on the right of Fig. 13-(b).
Fig. 14 visualizes the magnetic field lines and the magnitudes of
forces for the example of magnetic shielding with an iron plate.
Observe that the iron plate weakens the magnetic forces in the area
under the bar magnet.

The shielding effect increases proportionately to the volume of the
shielding object. In Fig. 15-(a), the iron plate is thin and the magnetic
field generated by it is weak. A single ball is strongly induced and
lifted toward the bar magnet. The other balls are weakly induced.
In contrast, the magnetic field generated by the thick iron plate in
Fig. 15-(b) is strong, and no ball is lifted.

5.3 Magnetic Remanence
Fig. 16-(a) shows a permanent magnet (bar magnet) and two kinds of
soft ferromagnets, a nail and three iron balls, which are not induced
yet. In Fig. 16-(b), the nail is in contact with the bar magnet and
induced. Fig. 16-(c) and -(d) show that the iron balls are induced by
the remanence of the nail.

In Fig. 17-(a) and -(b), a large number of iron balls are lifted toward
the crane magnet, and a heap of induced magnets is formed due
to mutual induction. In Fig. 17-(c), we reduce the magnetization of
the crane magnet, and many of the induced magnets fall down to
the ground because the gravitational force exceeds the magnetic
forces exerted on them. In Fig. 17-(d), the crane magnet becomes
completely unmagnetized, but a few induced balls still hang from
the crane magnet due to remanence.

5.4 Performance
We made all experiments with Intel Core i7-4770 3.40 GHz CPU, 20
GB memory, and Nvidia GeForce GTX 780. The magnetic simulation
was implemented in CUDA, and the rigid-body simulation was built
upon the open-source library, Bullet Physics [Coumans 2015]. All
scenes were rendered with Mitsuba [Jakob 2010].

The performances of the experiments presented so far are listed in
Table 1. ∆t represents the time step size in the rigid-body simulation,
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(a) (b) (c) (d)

Fig. 16. Remanence simulation.

(a) (b) (c) (d)

Fig. 17. The crane magnet and a large number of soft ferromagnets.

Table 1. Performance data: ∆t , Tm , and Tr are all in milliseconds.

Scene # of cells ∆t Tm Tr
ball chain (Fig. 12) 28 4 2.5 1.3
wood plate (Fig. 13-(a)) 32 10 2.4 1.0
iron plate (Fig. 13-(b)) 191 10 8.1 1.1
thin iron (Fig. 15-(a)) 140 4 24 4.4
thick iron (Fig. 15-(b)) 140 4 24 4.5
nail and balls (Fig. 16) 88 5 1.4 1.4
crane magnet (Fig. 17) 690 1 118 57

Tm is the elapsed time on the magnetic simulation, and Tr is that
on the rigid-body simulation.

A problem can be found in our integrated simulation framework.
The rigid-body simulator requires the magnetic forces and torques
at time t to compute the velocities and poses at t + ∆t . The mag-
netic forces and torques are computed using the magnetic moments,
which are provided by the magnetic simulator presented in Algo-
rithm 1. Taking the magnetic moments at t as input, the magnetic
simulator updates them with the time step size δt . Consequently,
the rigid-body simulator uses the magnetic forces and torques at
t + δt × iter , where iter denotes the iteration count in Algorithm 1.
Fortunately, this discrepancy is negligible because δt is in the order
of nanoseconds (whereas ∆t is in between 1ms and 10ms in the
current implementation) and iter is usually smaller than 30 in our
experiments.

5.5 Simulation Stability
When the external field, HE, remains constant, the micromagnetic
free energy, also known as the magnetic energy, is determined by
the magnetization distribution [d’Aquino 2005]. The magnetization
dynamics defined by the LLG equation has the so-called Lyapunov
structure with respect to the micromagnetic free energy, which
guarantees that the free energy does not diverge [Podio-Guidugli
2001]. Let G denote the free energy per volume at a point. Then, its
change over time is defined as follows:

dG

dt
= −µ0η





 ∂M∂t 



2 ≤ 0 (26)

where µ0 represents the permeability of the free space and η is the
material-specific damping constant. Appendix B proves that the
non-divergence of the free energy, presented as an inequality in
Equation (26), holds in our numerical simulation.
Even though the Lyapunov structure does not ensure the con-

vergence of the free energy, its tendency to change the free energy
toward stable equilibrium points is proven [Podio-Guidugli 2001].
Unfortunately, this tendency might be impeded by numerical errors,
and our magnetic simulation is not guaranteed to terminate. In the
current implementation, we handle this using the iteration limit
presented in Section 4.5.
The magnetization curve in Fig. 6 asserts that M = 0 if HA = 0.

Appendix C proves that the net magnetic moment of a cell converges
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toward zero when HA = 0 in our simulation, i.e.,




 n∑
k=1

mi+1
k






2 −





 n∑
k=1

mi
k






2 ≤ 0 (27)

where mk denotes the k-th among n magnetic moments.

5.6 Limitations and Future Work
In the experiments presented so far, we used the iron balls for in-
duced magnets since they are popular in real-world experiments and
their rigid-body simulation is largely stable. When a non-spherical
object is rotated by a torque generated by magnetic forces, it may
easily penetrate other objects, leading to an unstable simulation.
Fortunately, the saturated magnetization helps prevent the torque
from becoming excessively large. However, we are not completely
free from the instability problem. When the centers of two cells
coincide, for example, the magnetic force and torque may go to
infinity. Our future work includes investigating robust magnetic
interaction for rigid-body simulation [De Graef and Beleggia 2009].
We used spherical cells mainly because the analytic solution

of Hendo_D is available (Equation (16)). Given an object with an
arbitrary geometry such as sharp corners, the cell resolution needs
to be increased for quasi-uniform distribution. This often degrades
efficiency. Our future work may include discretizing with arbitrarily-
shaped cells and computing Hendo_D for each cell using [Beleggia
and De Graef 2005].

In order to port the micro-scale magnetization dynamics into the
macro scale, we replace a huge number of infinitesimal magnetic
moments with a small number of large magnetic moments which
are stored in cells. Even though simulation at the macro scale pro-
duces satisfactory results, we lose one of the important properties
of magnetics, which is the exchange anisotropy [Aharoni 2000]. We
will investigate how to integrate the exchange anisotropy into our
simulation framework.
It is possible to control convergence speed in magnetization by

adjusting α in Equation (9). In the current implementation, however,
we used the same α for all magnetic objects. We envision that a
variety of magnetization dynamics could be created with varying α .
In principle, the demagnetizing factor, γD , is related to the shape
of a magnetic cell. However, it can be adjusted regardless of the
shape to define the susceptibility of, for example, a paramagnet.
Moreover, if η in Equation (4) is negative, the magnetization of an
induced magnet will be damped reversely, making it antiparallel to
the effective magnetic field. Then, it would act like a diamagnet or
a superconductor. These experiments are left as future works.
Magnetic interactions are fundamentally generated by electric

interactions. However, our method does not take this into account.
In the future, it would be necessary to carry out research on those
electrical properties.

6 CONCLUSION
We presented a novel method of implementing magnetization dy-
namics. We decompose each magnetic object into uniform cells and
assign multiple magnetic moments to a cell. The temporal change

of the magnetic moments is simulated using the Landau-Lifshitz-
Gilbert equation. Our method not only adjusts each cell’s magnetiza-
tion exposed to the effective magnetic field but also limits its upper
bound so as to prevent the magnetic force and torque from becoming
excessively large. It enables stable rigid-body simulation of mag-
netic objects. The method also facilitates implementing magnetic
mutual induction and remanence.
In addition to animations and visual effects, our work can be

used for virtual magnet experiments. A major topic in elementary-
school science classes is on magnets, and many efforts have been
made to conduct magnet experiments in the virtual world. Over
the past few years, a new wave of interest in virtual reality has
formed. It makes the virtual magnet experiments a more feasible
goal especially because the cost barrier of manipulating virtual
objects in a realistic way has been dramatically reduced. Our work
enables various magnet experiments to be conducted in the virtual
world.
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APPENDIX A MAGNETIC FORCES AND TORQUES
Themagnetic force (F) and torque (T) exerted on amagnetic moment
(µ) are determined by the applied magnetic field (HA). According to
Ampere’s law, F and T can be formulated in a form of a Taylor series
expansion. The leading terms of the expansion can be phrased as
follows:

F = µ0∇(µ · HA) (28)
T = µ0µ × HA (29)

where µ0 represents the permeability of the free space. When the
external magnetic field is ignored, Equations (28) and (29) can be
rephrased using Equation (15) to be exclusively expressed with the
magnetic moment and the other magnetic moments:

F =
µ0
4π

∑
i

∑
j

[
−15ri j

( (
µ · ri j

)
·
(
µi j · ri j

) )
∥ri j ∥7

+
3ri j

(
µ · µi j

)
+ 3

(
µ
(
µi j · ri j

)
+ µi j

(
µ · ri j

) )
∥ri j ∥4

]
(30)

T =
µ0
4π

∑
i

∑
j

[ 3 (
µ × ri j

) (
µi j × ri j

)
∥ri j ∥5

−
µ × µi j

∥ri j ∥3

]
(31)

where µi j is the magnetic moment of cell Ci j , and ri j is the vector
from the center ofCi j to the position of µ. See [Thomaszewski et al.
2008] for more detail.

APPENDIX B NON-DIVERGENCE OF MAGNETIZATION
DYNAMICS WITH MIDPOINT
INTEGRATION

As presented in [d’Aquino et al. 2005], Heff can be expressed in
terms of the magnetization derivative of the free energy:

Heff = −
∂G

∂M
(32)

In our numerical scheme, Equation (32) can be modified with the
first-order approximations of G andM according to Equation (11):(

Gi+1 −Gi
)
= −Ms

(
mi+1 −mi

)
· H

i+ 1
2

eff (33)

Let us dot-multiply both sides of Equation (12) by −MsH
i+ 1

2
eff :

−Ms

(
mi+1 −mi

)
·H

i+ 1
2

eff =
γ∆tMs

2
(
1 + α2

) ((
mi+1 +mi

)
×Hi+ 1

2

)
·H

i+ 1
2

eff

(34)
The left-hand side of Equation (34) can be replaced by Gi+1 −Gi

according to Equation (33). Therefore, Equation (34) can be modified
as follows:

Gi+1 −Gi =
γ∆tMs

2
(
1 + α2

) ((
mi+1 +mi

)
×Hi+ 1

2

)
· H

i+ 1
2

eff (35)

Using Equations (9) and (12), the right-hand side of Equation (35) is
rephrased as follows:

Gi+1 −Gi

=
γ∆tMs(
1 + α2

) (
mi+ 1

2×

(
H
i+ 1

2
eff + αm

i+ 1
2 × H

i+ 1
2

eff

) )
· H

i+ 1
2

eff

=
γ∆tMsα(
1 + α2

) (
mi+ 1

2×

(
mi+ 1

2 × H
i+ 1

2
eff

) )
· H

i+ 1
2

eff

≤ 0 (36)

This shows that the free energy does not diverge.

APPENDIX C CONVERGENCE OF NET
MAGNETIZATION OF MULTIPLE
MAGNETIC MOMENTS

Given n magnetic moments in a cell, let us denote the k-th as mk .
Assuming that Heff = Hendo_D, Equations (8), (18), and (23) lead to
the following:

dmk
dt
=

γγDMs

n
(
1 + α2

) (
mk ×

n∑
i=1

mi + αmk ×

(
mk ×

n∑
i=1

mi

))
(37)

The sum of dmk
dt (for k = 1, 2, ...,n) is calculated as follows:

n∑
k=1

dmk
dt

=
γγDMs

n
(
1 + α2

) ( n∑
k=1

mk ×

n∑
i=1

mi + α
n∑

k=1

(
mk ×

(
mk ×

n∑
i=1

mi

)))
=

γγDMsα

n
(
1 + α2

) n∑
k=1

(
mk ×

(
mk ×

n∑
i=1

mi

))
(38)

Note that
n∑

k=1
mk equals

n∑
i=1

mi . Using the vector identity, a×(b × c) =

(a · c) b − (a · b) c, Equation (38) is rephrased as follows:
n∑

k=1

dmk
dt
=
γγDMsα(
1 + α2

) (
1
n

n∑
k=1

(
mk ·

n∑
i=1

mi

)
mk −

n∑
i=1

mi

)
(39)
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Consider the dot product of Equation (39) and
n∑

k=1
mk :

n∑
k=1

mk ·

n∑
k=1

dmk
dt

=
γγDMsα(
1 + α2

) (
1
n

n∑
k=1

(
mk ·

n∑
i=1

mi

)
mk ·
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mk −
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)
=
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) (
1
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 n∑
i=1

mi





2) (40)

Since ∥mk ∥ = 1, Equation (40) is always less than or equal to zero:
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 n∑
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2 (41)

1
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2 ≤






 n∑
i=1

mi






2 (42)

Now consider Equation (27). It can be rephrased as follows:( n∑
k

mi+1
k +

n∑
k

mi
k

)
·

( n∑
k

mi+1
k −

n∑
k

mi
k

)
≤ 0. (43)

Equations (10) and (11) turn Equation (43) into:

n∑
k

m
i+ 1

2
k ·

n∑
k

(
dmk
dt

)i+ 1
2

≤ 0 (44)

The left side is in fact identical to Equation (40). Therefore, Equation

(44) is always true. Let c denote lim
i→∞

n∑
k
mi
k . Note that limi→∞

n∑
k

(
dmk
dt

)i+ 1
2

should be zero. Then, taking the limit of both sides of Equation (40),
we obtain the following:

1
n

n∑
k=1





 limi→∞
mi
k · c





2 − ∥c∥2 = 0 (45)

This holds only when lim
i→∞

mi
k = c for k = 1, 2, ...,n or c = 0. The

first case may not happen, and therefore c = 0.
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