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A non-Euclidean space is characterized as a manifold with a specific struc-
ture that violates Euclid’s postulates. This paper proposes to approximate
a manifold with polytopes. Based on the scene designer’s specification,
the polytopes are automatically concatenated and embedded in a higher-
dimensional Euclidean space. Then, the scene is navigated and rendered via
novel methods tailored to concatenated polytopes. The proof-of-concept
implementation and experiments with it show that the proposed methods
bring the virtual-world users unusual and fascinating experiences, which
cannot be provided in Euclidean-space applications.
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1 INTRODUCTION
Euclid, often referred to as the “founder of geometry,” stated the
following postulates:

• There is a unique straight line passing through two points.
• A straight line extends indefinitely in either direction.
• A circle may be drawn with any given center and radius.
• All right angles are equal.
• Given a point not on a given line, there exists a unique line
through the point that is parallel to the given line.

In this paper, we call a space non-Euclidean if any of Euclid’s pos-
tulates is violated in the space. Fig. 1-(a) shows a simplest non-
Euclidean space example, where a room with a red cube and another
roomwith a blue tetrahedron are repeatedly connected. This is often
called a periodic space. A user starting in the red room walks straight
through the blue room to return to the red room. As illustrated in
Fig. 1-(b), the first postulate of Euclid is violated. (In the curved spaces
such as hyperbolic and elliptic geometries, all Euclid’s postulates
hold except the fifth, which is called the parallel postulate.)
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Fig. 1. A non-Euclidean space example: (a) A red room and a blue room are
repeatedly connected. (b) The top view of the space shows that two points,
𝑝1 and 𝑝2, are connected by multiple lines.

Being unimplementable in the physical world, non-Euclidean
spaces can bring strange but fascinating experiences to the users in
the virtual world. Thus, a growing number of non-Euclidean games
have attracted attention. A well-known example is Portal [Valve
2007]. As will be presented in Section 2, however, the modeling
and rendering techniques adopted in such games are largely ad hoc,
lacking mathematical backgrounds and methodologies.
In our study, an 𝑚-dimensional (simply, 𝑚-D) non-Euclidean

space is characterized as the same dimensional manifold (simply,
𝑚-manifold) with a specific structure that violates Euclid’s postu-
lates. This paper first presents the general methods for rendering𝑚-
manifolds embedded in 𝑛-D Euclidean spaces, where𝑚 < 𝑛 (𝑚,𝑛 ∈
Z+). Unfortunately, it is computationally infeasible to render the
manifolds themselves. Therefore, we propose to approximate a man-
ifold with a concatenation of polytopes. This paper presents rigorous
methods for modeling and rendering such concatenated polytopes.
As 3-manifolds allow us to create a variety of interesting virtual
worlds, our experiments are focused on concatenated 3-polytopes
embedded in 4D or higher-dimensional Euclidean spaces. The ex-
periment results are promising and show the feasibility of modeling
and rendering non-Euclidean spaces.
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2 RELATED WORK
In computer graphics fields, there have been efforts for visualizing
non-Euclidean 3D spaces. Silva [2018] proposed a technique for ren-
dering 3D manifolds embedded in 4D Euclidean space. Novello et
al. [2020a] implemented global illumination in non-Euclidean spaces,
where the distance metric is analytically defined. On the other hand,
several works for rendering with nonlinear rays have been reported.
Weiskopf et al. [2004] and Ayush and Chaudhuri [2017] proposed
rendering techniques using rays bent by gravitational forces from a
black hole. Falk et al. [2007] generated panorama maps using curved
rays to visualize various heights of terrain. Cavallo [2021] proposed
successive conversions for dimension reduction in the context of
generating a 2D screen for 4D Euclidean space. In immersive vir-
tual environments, several methods were proposed for rendering
non-Euclidean spaces, whose geometries are a subset of Thurston’s
geometries [Coulon et al. 2020a,b; Hart et al. 2017a,b, 2015]. Novello
et al. [2020b] also proposed a rendering method in the spaces of Nil,
Sol and SL2 (R).
A few video games have been popular, which tried to visual-

ize non-Euclidean spaces. They include Portal [Valve 2007] and
Antichamber [Demruth 2013]. In reality, however, they are not non-
Euclidean applications. Instead, theymimic connected virtual worlds
using the so-called portals andmainly support teleportation between
the worlds.

In the context of anisotropic meshing, many methods have been
proposed to embed manifolds in higher-dimensional spaces. Zhong
et al. [2013] proposed a particle-based meshing technique that uti-
lizes the inter-particle energy optimization problem in a high dimen-
sional embedding space. In contrast, explicit embedding methods
have also been proposed [Dassi et al. 2014, 2015; Lévy and Bon-
neel 2013; Panozzo et al. 2014]. These methods suffer from self-
intersection problems. Zhong et al. [2018] proposed to overcome
the problems with a method for embedding continuous manifolds
in high dimensional spaces using Riemannian metrics.
For reduction of embedding space’s dimension, Baramiuk and

Wakin [2009] showed an orthogonal linear projection of a manifold
into a sufficiently high dimensional random subspace while approx-
imately preserving all geodesic distances. Verma [2012] proposed
the distance-preserving embedding method for any dimensional
manifold using machine learning.

3 NAVIGATION AND RENDERING IN MANIFOLDS
Our methods support𝑚-D non-Euclidean spaces embedded in 𝑛-D
Euclidean spaces, where𝑚 < 𝑛 (𝑚,𝑛 ∈ Z+). An𝑚-D non-Euclidean
space is simply an𝑚-manifold, which is defined as a topological
space that locally resembles𝑚-D Euclidean space.
We first present 2-manifold embedded in 3D Euclidean space in

Section 3.1. It is easy to visualize and helps understand our methods
for handling non-Euclidean spaces. In Section 3.2, it is extended
to 3-manifold embedded in 4D or higher-dimensional Euclidean
spaces.

3.1 Two-manifold in 3D Euclidean Space
Fig. 2-(a) shows an example of 2-manifold embedded in 3D Euclidean
space, where the blue arrows represent the normals of the manifold.

The basic rendering primitive in 2-manifolds is line segment. (That
in 3-manifolds is polygon, as will be presented in Section 3.2.) Fig. 2-
(b) shows a line segment in green (on the right). Suppose that the
camera is located at o. For rendering the line segment, we first define
the camera space with its origin at o.

Camera-space basis. In Fig. 2-(b), the red arrow represents the
unit vector along the view direction, which we denote as view. The
cross product of the manifold normal (in blue) and view defines
what we denote as left (in black). Together with view, it composes
the orthonormal basis of the 2D camera space.

Camera position. When a camera navigates a 2-manifold, its mov-
ing direction may be different from the view direction and is de-
scribed by its velocity. For each frame, the camera is advanced by
the velocity. Fig. 2-(c) shows the cross-section view of the mani-
fold, and colored in red is the velocity. As the red arrow’s tip is not
necessarily on the manifold, it is projected onto the manifold.

Rendering. A set of camera-space rays are fired from o toward the
2-manifold scene (composed of a single line segment in the example).
As depicted in Fig. 2-(d), each ray marches. For each marching step,
the ray is tested if it hits the line segment. If it hits nothing, the
ray is projected onto the manifold. Taking the projected point as
the origin, a tangent space is computed, and the ray’s direction is
redefined in the tangent space for the next marching step.
Unless the marching step size is sufficiently small, however, the

ray may move past the line segment. To resolve this problem, we
extrude the line segment infinitely along the normal n and its op-
posite direction, as shown in Fig. 2-(d). If the ray of the ‘current’
marching step hits the infinite rectangle in the 3D Euclidean space,
it is determined to hit the line segment in the 2-manifold.

In Fig. 2-(e), p0 and p1 denote the end points of the line segment.
The normals at p0 and p1 are interpolated to define n. Let s denote
the start position of the current ray and r denote the unit vector
along the ray. Then, solving the following equations, we obtain 𝛼 ,
𝛽 and 𝛾 :

p0 + 𝛼 (p1 − p0) + 𝛽n = s + 𝛾r (1)
If 𝛼 ∈ [0, 1] and 𝛾 > 0, the ray is determined to hit the rectangle
and equivalently the line segment. (Illuminating the point hit by the
ray will be presented in Section 4.2.)
The above equations are not always solvable. For example, if r

and n are parallel, the equations become singular. Then, the least
squares method is used to obtain approximated solutions.

3.2 Three-manifold in 4D or Higher-dimensional Euclidean
Spaces

Even though 2-manifolds are easy to understand, they leave little
room for creating meaningful content. In contrast, 3-manifolds are
not easy to understand but allow us to create a variety of interesting
virtual worlds. Therefore, the experiments reported in Section 6
focus on 3-manifolds.
Before diving into 3-manifolds, let us review how the camera

pose is updated in Euclidean-space applications. In PC games, for
example, the camera’s view directions are updated typically using
mouses whereas its moving directions are updated typically using
the arrow keys of the keyboard.
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Fig. 2. Two-manifold embedded in 3D Euclidean space: (a) Two-manifold and its normal vectors. (b) The camera-space basis, {left, view}, and the rendering
primitive, line segment. (c) The camera is advanced using its velocity (red vector) and then projected onto the manifold, i.e., purple vector = red vector + gray
vector, so that the camera is confined to the manifold. (d) Marching ray and the infinite rectangle extruded from the line segment. (e) In the current marching
step, the ray hits the infinite rectangle.
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Fig. 3. Steps for updating the camera-space basis: (a) The original camera-
space basis is composed of three orthonormal vectors, left, up and view.
(b) Small fractions of left and up are added to view to define view′. (c)
Then, left is changed to left′: left′ = normalize(up × view′) . (d) Finally, up
is changed to up′: up′ = view′ × left′.
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Fig. 4. Every ray marches in 3-manifold embedded in 4D Euclidean space.
In each marching step, the ray is tested if it hits the infinite prisms.

The camera-space basis is composed of three orthonormal vectors,
which we name left, up and view. See Fig. 3-(a). If the user looks
slightly to the left and upward (using mouses), for example, small
fractions of left and up are added to view to update it, as shown in
Fig. 3-(b), where the updated vector is normalized to define view′.
Then, the cross product of up and view′ defines left′. See Fig. 3-(c).
Finally, the cross product of view′ and left′ is taken as up′, as shown
in Fig. 3-(d), so that left′, up′ and view′ make up the new basis. On
the other hand, the camera’s moving direction provided by the user
(using arrow keys) is mapped to a velocity vector, by which the
camera is advanced.

(a) (b)

Fig. 5. Two-manifold embedded in 3D Euclidean space: (a) Concatenated
2-polytopes. (b) Ray marching in the polytopes.

Now, we will present camera pose update and rendering in “3-
manifold embedded in 4D Euclidean space.” Recall that all operations
for handling “2-manifold embedded in 3D Euclidean space,” e.g., the
cross-product operation used to define 2D camera-space basis, are
made in the embedding space, which is 3D. Similarly, all operations
for 3-manifold will be made in the 4D Euclidean space.

Camera-space basis. Just as left, up and view are initialized with
some default vectors in most Euclidean-space applications, so are
those in “3-manifold embedded in 4D Euclidean space.” The differ-
ence is that left, up and view are now 4D vectors. If the user looks
slightly to the left and upward (e.g., using mouses), we add small
fractions of left and up to view to define view′. Next, we should
compute left′ and up′. For this, we use the cross-product operation
for 4D vectors, as in Blinn’s work [2003]. The cross product of three
4D vectors (a, b and c) is defined as follows:

cross(a, b, c) = (𝑑𝑥 , 𝑑𝑦, 𝑑𝑧 , 𝑑𝑤) (2)

where

𝑑𝑥 =

������𝑎𝑦 𝑎𝑧 𝑎𝑤
𝑏𝑦 𝑏𝑧 𝑏𝑤
𝑐𝑦 𝑐𝑧 𝑐𝑤

������ , 𝑑𝑦 =

������𝑎𝑧 𝑎𝑤 𝑎𝑥
𝑏𝑧 𝑏𝑤 𝑏𝑥
𝑐𝑧 𝑐𝑤 𝑐𝑥

������ ,
𝑑𝑧 =

������𝑎𝑤 𝑎𝑥 𝑎𝑦
𝑏𝑤 𝑏𝑥 𝑏𝑦
𝑐𝑤 𝑐𝑥 𝑐𝑦

������ , 𝑑𝑤 =

������𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧

������
Let normal denote the normal of 3-manifold at the current posi-
tion. Then, cross(up, view′, normal) defines left′, and cross(view′,
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Fig. 6. Crossing over polytopes: (a) The camera at s moves with r to cross over the polytopes. (b) The new position, s′, and the new moving direction, r′, are
computed for navigating the right polytope. (c) The bases of two polytopes share u. (d) When crossing over the polytopes, r is rotated to r′ (Equation (6)).

normal, left′) defines up′. The new camera-space basis is composed
of left′, up′ and view′.

Camera position. As in general Euclidean-space applications, the
moving direction provided by user is mapped to a velocity vector.
As the basis vectors are all 4D, the velocity is also 4D. The camera
is advanced by the 4D linear velocity and then projected onto the
3-manifold.

Rendering. The basic rendering primitive in 3-manifold is poly-
gon or triangle. A set of camera rays are fired toward the 3-manifold
scene. Each ray marches and is tested if it hits the rendering prim-
itives. If not, the ray is projected onto the manifold and marches
again.

Fig. 4 visualizes a 3-manifold as a box, where a triangle in it (with
three vertices, p0, p1 and p2) is extruded along n (and its opposite
direction) to define an infinite prism. The ‘current’ ray is fired from
swith the direction r. We solve the following equations of 4D points
and 4D vectors, which are extended from Equation (1):

p0 + 𝛼1 (p1 − p0) + 𝛼2 (p2 − p0) + 𝛽n = s + 𝛾r (3)

If both𝛼1 and𝛼2 ∈ [0, 1],𝛼1+𝛼2 ≤ 1 and𝛾 > 0, the ray is determined
to hit the prism and equivalently the triangle.

The embedding space is not restricted to 4D. For example, a few
3-manifolds reported in Section 6 are embedded in 5D Euclidean
spaces. When𝑚-manifolds are embedded in 𝑛-D Euclidean spaces,
𝑛 −𝑚 normals are defined in the 𝑛-D space. On the other hand, the
rendering primitives in 3-manifolds are not restricted to triangles
but include 0-, 1- and 2-simplices, which correspond to a point, a
line segment and a triangle, respectively. The rendering primitive in
m-manifold is generally l-simplex, where 𝑙 is either 0, 1, .. , or𝑚 − 1.
For the ray hit test, the 𝑙-simplex is extruded along 𝑛 −𝑚 normals
(and their opposite directions) to make an 𝑛 −𝑚 dimensional higher
object. Then, the ray hit test expressed in Equation (3) is extended
as follows:

p0 +
𝑙∑

𝑖=1
𝛼𝑖 (p𝑖 − p0) +

𝑛−𝑚∑
𝑗=1

𝛽 𝑗n𝑗 = s + 𝛾r (4)

where p𝑖 represent the vertices of the l-simplex, and n𝑗 represent
𝑛 −𝑚 normals. If every 𝛼𝑖 ∈ [0, 1],∑𝑙

𝑖=1 𝛼𝑖 ≤ 1 and 𝛾 > 0, the ray is

determined to hit the l-simplex. (Appendix A gives more discussions
on𝑚-manifolds embedded in 𝑛-D spaces.)

4 NAVIGATION AND RENDERING IN POLYTOPES
The major computational bottleneck of the methods presented in
Section 3 lies in ray marching (as shown in Fig. 2-(d) for 2-manifolds).
For each marching step, we solve Equation (4) for every rendering
primitive, and we also project the ray onto the manifold if it hits
nothing. In order to reduce the computational cost, we approximate
an𝑚-manifold with a concatenation of𝑚-D polytopes (henceforth,
m-polytopes). Fig. 5-(a) shows a 2-manifold approximated with four
concatenated 2-polytopes. Given the polytopes, a single step of
ray marching is made per polytope, as illustrated in Fig. 5-(b). No
projection is needed. Unlike in Fig. 2-(c), advancing the camera
is not followed by projection either. This section presents camera
navigation and rendering in concatenated polytopes, and Section 5
presents how the polytopes are concatenated.

4.1 Camera Navigation
Fig. 6-(a) depicts a camera’s path on concatenated 2-polytopes. Cur-
rently, the camera located at s is moving to the right polytope with
the velocity r. The intersection between r and the left polytope’s
edge can be computed using Equation (1), where p0 and p1 are the
edge’s end points and n is the current polytope’s normal. Among 𝛼 ,
𝛽 and 𝛾 obtained by solving Equation (1), 𝛽 may not be zero due to
computational errors but must be very close to zero.
Once the intersection is computed, it is taken as new position

of the camera (denoted as s′ in Fig. 6-(b)) and camera navigation
is resumed in the right polytope. For this, the velocity needs to be
recomputed unless the adjacent polytopes are parallel. It is denoted
as r′ in Fig. 6-(b).

Fig. 6-(c) shows the orthonormal bases of two polytopes, {u, v1}
and {u, v2}. They share u, which is obtained by normalizing the
vector connecting p0 and p1. In Fig. 6-(d), the basis vectors and r
are relocated for exposition purposes. See the dotted circle. A 2D
space is spanned by v1 and v2. Let V = (v1 v2). It is a basis-change
matrix from the 2D space to the 3D embedding space.
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Fig. 7. Illumination in non-Euclidean spaces: (a) In general, the path between a surface point, q, and a light source, l, is not straight. (b) The light rays from l
classify the polytope, P3, as lightable using l. (c) Before flattening the polytopes, the shadow ray is not straight. It is hard to define such a shadow ray. By
flattening the polytopes and transforming the light source from l to l′, the shadow ray becomes straight. (d) Even if a polytope is lightable, the shadow ray
may not reach the light source but proceed to an empty space. (e) The shadow ray may enter an invalid polytope. (f) In this example, l and q are located in the
opposite sides of a cube, and there are multiple paths between them.

The dotted circle of Fig. 6-(d) shows that r is projected onto v1
by V𝑇 . The projected, V𝑇 r, is rotated by R presented below so that
it is aligned with v2:

R =

(
cos 𝜋

2 − sin 𝜋
2

sin 𝜋
2 cos 𝜋

2

)
(5)

Finally, the rotated, RV𝑇 r, is given the “3D representation” by V, i.e.,
VRV𝑇 r represents the 3D vector aligned with v2. Let us call it r′0.

On the other hand, note that VV𝑇 r is the “3D representation”
of r’s projection onto v1. Then, the vector connecting it and the
original r is represented as (I−VV𝑇 )r, where I is the identity matrix.
Adding it to r′0, we obtain r′:

r′ = r′0 + (I − VV𝑇 )r

= VRV𝑇 r + (I − VV𝑇 )r (6)

It is the velocity (for camera’s moving direction) in the right poly-
tope.

It is straightforward to extend the above methods (for computing
s′ and r′) to𝑚-polytopes embedded in 𝑛-D Euclidean space. The
boundary of an𝑚-polytope is composed of (𝑚 − 1)-polytopes. We
call them facets. Two 𝑚-polytopes are connected at an (𝑚 − 1)-
D facet. It is decomposed into (𝑚 − 1)-simplices. (For example, a
quad facet connecting two cubes is decomposed into two triangles.)
The intersection between r and each simplex is computed using
Equation (4). It defines the 𝑛-D position, s′.

When two𝑚-polytopes are connected at an (𝑚 − 1)-D facet, the
basis of each 𝑚-polytope is composed of “the basis of the facet”
plus an additional vector. Let us denote the additional vectors as
v1 (of the current polytope) and v2 (of the next polytope). Then,
Equations (5) and (6) are used to compute r′. It is an 𝑛-D vector.

4.2 Rendering
In principle, rendering is done via ray tracing. For each ray, only a
single step of ray marching is made per polytope, as illustrated in
Fig. 5-(b). When a camera ray crosses over polytopes, its direction
is changed in the same manner as the camera’s moving direction
(presented in Fig. 6).

Suppose that a camera ray hits a rendering primitive. In 7-(a), q
denotes the point hit by the ray. To illuminate q, the shadow raymust
be fired from q to the light source, denoted as l. In non-Euclidean
spaces, however, it is a challenge to define the shadow ray because
its geodesic is not straight in general.

In order to tackle the challenge, we pre-process the light sources
in the scene. Assuming that they are all static, uniformly-sampled
omnidirectional light rays are fired from each light source. Fig. 7-(b)
depicts two light rays from l. (When crossing over the polytopes, the
light ray’s direction is changed in the same manner as the camera’s
moving direction.)

When a light ray from l visits a polytope, it is classified as “lightable
using l” and the previously visited polytopes are stored in a list
which we call the light-ray path to the lightable polytope. In Fig. 7-
(b), P3 is lightable using l and the light-ray path is the list of P1, P2
and P3. Only when the point hit by the camera ray, q, resides in the
polytope that is lightable using l, the shadow ray is defined between
q and l.
As all polytopes have zero Gaussian curvatures, we can flatten

the polytopes included in the light-ray path by using the rotation
method presented in Section 4.1. Fig. 7-(c) shows that the light
source l is transformed to l′ through successive rotations, making
the shadow ray straight. It is l′ − q.
On the way to l′, the shadow ray visits the flattened polytopes

one by one. If it intersects any object in a polytope, we judge that q
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Fig. 8. Concatenating 2-polytopes (Example 1): (a) A 2-manifold house is composed of three 2-polytopes, each of which is considered a 2D room. (b) User’s
walking path. (c) The reverse path. (d) Three pairs of mating facets (corresponding to doors) are specified manually. (e) The corresponding vertices of the
mating facets are connected with dotted links, and their lengths are minimized so that the 2-manifold in (a) is automatically created.

is not lit by l and stop the shadow ray. Otherwise, it proceeds to the
next connected polytope.

There may be no connected polytopes. Fig. 7-(d) shows an exam-
ple, where the right polytope is lightable using l but the shadow
ray leaving the polytope enters an empty space. Then, we stop the
shadow ray. Even though there exists a connected polytope, it may
not belong to the light-ray path to q, as shown in Fig. 7-(e). Then,
we judge that the polytope is invalid and stop the shadow ray.

Note that there may be multiple light-ray paths from a single
light source to a single point, as illustrated in Fig. 7-(f). Then, each
path is processed separately, leading to an independent shadow ray.
This makes multiple shadow rays contribute to illuminating q with
a single light source, l. It is a distinguished feature of non-Euclidean
spaces.

5 SCENE MODELING: POLYTOPE CONCATENATION
Fig. 8-(a) shows a 2-manifold composed of three 2-polytopes. As-
sume that each polytope represents a 2D “square” room. Then, the
manifold can be considered as a house with three rooms, where
Rooms 1 and 2 are connected by a door denoted as A, Rooms 2 and
3 are by B, and Rooms 1 and 3 are by C.
Suppose that a user starts walking from Room 1 and passes

through A, B and C in sequence to return to Room 1. Fig. 8-(b)
depicts the user’s path on the conceptually-unfolded 2-manifold.
The user would be surprised to return to Room 1 without walking
through an additional room which would be expected to be located
at the lower-right quadrant in Fig. 8-(b). Non-Euclidean spaces can
bring such novel experiences to the users. Fig. 8-(c) depicts the re-
verse path, which may also give similar experiences to the users.
The three-room house is an example of elliptic geometry, where the
interior angles of the triangular path do not sum to 180°.

This section presents the current implementation for concatenat-
ing polytopes. It is a proof-of-concept implementation. Its possible
extensions will be discussed in Section 7.4.

5.1 Spring Forces and Collision Resolution
As a polytope corresponds to a small world such as a room, we
assume that all polytopes are created by scene designers. Fig. 8-(d)
shows separate polytopes. When concatenating two polytopes, the
scene designer selects amating facet per polytope. The mating facets

(a) (b)

(c) (d)

Fig. 9. Concatenating 2-polytopes (Example 2): (a) A three-room house + a
front yard. (b) Vertex correspondences for the mating facets, where those
for the three rooms are copied from Fig. 8-(e). (c) Spring forces often result
in interpenetrating polytopes. (d) Penetration-resolved polytopes.

of two polytopes should be congruent so that they are converted
into a door connecting two worlds. Three pairs of mating facets are
shown in Fig. 8-(d). The designer also specifies the correspondences
between the vertices of the mating facets. In Fig. 8-(e), they are
depicted as dotted links.
Given the vertex correspondences, our goal is to find automat-

ically the poses of the rigid polytopes which minimize the links’
lengths. An efficient and easy-to-implement way to achieve the goal
is to adopt themass-spring model, where the vertex-connecting links
are taken as springs so that the polytopes are transformed by the
spring forces. The polytopes are assumed to be rigid bodies, and the
spring forces follow simple Hooke’s law, i.e., the springs’ potential
energies are defined by the distances between the mating facets’
vertices. Using the mass-spring model, we obtain the three-room
house given in Fig. 8-(a).
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(a) (b)

SF

(c)

CR SFSF

(d)

Fig. 10. Spring forces and collision resolution: (a) The 2-manifold band is composed of eight 2-polytopes. (b) Vertex correspondences for the mating facets. (c)
The polytopes are successfully concatenated only by the spring forces (SF). (d) Given the initial configuration, which is different from that in (c), the spring
forces make the polytopes interpenetrate, as shown in the second image. Collision resolution (CR) separates them, as shown in the third image. Then, the
spring forces concatenate them with no interpenetration.

Unfortunately, as the target manifold becomes complicated, the
spring forces may make the polytopes interpenetrate. Fig. 9-(a) de-
picts a 2-manifold for a three-room house (the same as Fig. 8-(a))
with a green front yard. Suppose that as shown in Fig. 9-(b), the
scene designer creates four 2-polytopes and specifies the vertex
correspondences for the mating facets. Then, the spring forces may
generate the result shown in Fig. 9-(c), where the rooms are con-
catenated to make a house but the house penetrates the front yard.

The interpenetrating polytopes are separated via collision resolu-
tion. Fig. 9-(d) shows a penetration-free state generated by collision
resolution. Even though the manifolds in Fig. 9-(a) and -(d) have dif-
ferent geometries “from the viewpoint of the 3D embedding space,”
they have the same topology, and therefore the camera navigating
the manifolds cannot perceive any differences between them.
Due to collision resolution, however, the polytopes might be

separated. Then, we again exert the spring forces on the vertex-
connecting links and then invoke collision resolution. Alternating
between spring forces and collision resolution is repeated until
either the polytopes are concatenated with no interpenetration or
the predefined count of iterations is reached.

Fig. 10-(a) shows a target manifold composed of eight 2-polytopes,
and Fig. 10-(b) depicts the vertex correspondences for their mating
facets. Shown on the left in Fig. 10-(c) is the randomly-generated
initial configuration of the polytopes. (The polytopes appear to be
small because they are captured from a distance.) The spring forces
(abbreviated to SF in the figure) concatenate the polytopes with
no interpenetration, as shown on the right in Fig. 10-(c), making it
unnecessary to invoke collision resolution. In contrast, Fig. 10-(d)
shows that a different initial configuration leads to the sequence of
SF, CR (standing for collision resolution) and again SF. As already
discussed with Fig. 9-(a) and -(d), the result shown in Fig. 10-(d) is
identical to that in Fig. 10-(c) from the non-Euclidean viewpoint.

(a)

joint polytopes

(b)

Fig. 11. Concatenating 2-polytopes (Example 3): (a) Mating facets and vertex
correspondences. (b) Two joint polytopes are generated to concatenate the
polytopes given in (a).

5.2 Joint Polytopes
Concatenated penetration-free polytopesmay not be obtainedwithin
the predefined iteration count. Consider the example given in Fig. 11-
(a). Our goal is to concatenate the red and blue rooms so that a user
in the red roomwalks straight through the blue room to return to the
red room. It is a one-dimensional lower version of the periodic space
presented in Fig. 1-(a). The spring forces make the polytopes overlap,
which are then separated by collision resolution. Unfortunately, this
alternation is repeated indefinitely.
When a pair of𝑚-polytopes is not concatenated within the pre-

defined iteration count, the corresponding vertices of two mating
facets are connected to create a new𝑚-polytope. We call it a joint
polytope. Fig. 11-(b) depicts two joint polytopes.

5.3 Embedding in Higher-dimensional Spaces
The joint polytopes may penetrate other polytopes. Then, abandon-
ing the 𝑛-D embedding space, we embed the given polytopes in
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(a) (b)

Fig. 12. Concatenating 3-polytopes: (a) The mating facets are painted in
the same color. (b) Vertex correspondences.

(𝑛 + 1)-D Euclidean space and start the concatenation procedure
presented in Sections 5.1 and 5.2. Due to the additional dimension,
the chances of interpenetration are significantly reduced. Section 6
shows specific examples that demonstrate how higher-dimensional
embedding spaces help polytope concatenation.
If embedding in the (𝑛 + 1)-D Euclidean space does not work,

we move to (𝑛 + 2)-D space and resume the concatenation proce-
dure. This is repeated until we obtain concatenated penetration-free
polytopes.

The difference between the run-time performance in 𝑛-D embed-
ding space and that in a higher-dimensional space is negligible. For
example, consider the dot product operations used in illumination
and the cross product operations used in camera navigation. There
is no big difference between the operations with 𝑛-D vectors and
those with higher-dimensional ones.

5.4 Concatenating m-polytopes in 𝑛-D Euclidean Spaces
Our concatenation procedure was presented with 2-polytopes just
because they are easy to visualize. The same procedure can be
used for concatenating arbitrary𝑚-polytopes. Fig. 12-(a) shows 3-
polytopes, which represent three cuboid rooms. Once the mating
facets and vertex correspondences are specified, the concatenation
procedure will generate a 3-manifold, which represents a three-
room house embedded in 4D Euclidean space. Section 6 will present
such a 3-manifold house.

Recall that the rigid motions caused by the spring forces are made
“in the embedding space.” For example, the rigid motions made in
Fig. 12 are 4D. In contrast, the rigid motions in Fig. 9 are 3D. If the
embedding space were changed to 4D, however, the rigid motions
would also be 4D. These imply that we need a generalized 𝑛-D rigid-
body simulator that works in 𝑛-D embedding space. In the current
implementation, we use the 𝑛-D simulation method proposed by
Bosch [2020].

In order for an𝑚-polytope to be moved by such an𝑛-D rigid-body
simulator, its dimension should be extended to 𝑛-D. The number
of normals of the𝑚-polytope is 𝑛 −𝑚 (as discussed in Section 3.2),
and therefore the𝑚-polytope is slightly extruded along the 𝑛 −𝑚

normals to become 𝑛-D.

Fig. 13. The scene of Fig. 1-(a) is re-rendered using Phong lighting.

Fig. 14. Three-room house (3-manifold embedded in 4D Euclidean space).

6 EXAMPLES AND EXPERIMENTAL RESULTS
This section reports the results of our experiments made on an
AMD Ryzen 7 3800X 3.9 GHz processor and an NVIDIA GeForce
RTX 3090 with 32 GB memory. We also use CUDA for hardware
acceleration. We will present five scenes, and three among them
(presented in Fig. 14, 16 and 18) are designed to be similar to those on
YouTube [CodeParade 2018], which motivated our research together
with the portal-based games introduced in Section 2. The differences
in the methods will be presented in Section 7.5.
For rendering, we use three techniques. Phong lighting and ray

tracing are for real-time rendering whereas path tracing is not.
• Phong lighting: For each surface point hit by a camera ray,
lighting is computed with the Phong model.

• Ray tracing: The ray tree’s depth ranges from three to five,
depending on the scene complexities.

• Path tracing: Hundreds of rays are fired toward a pixel, and
every ray tree’s depth is five. The scene is assumed to be
composed of Lambertian surfaces.

The red-&-blue rooms introduced in Fig. 1-(a) are rendered with
path tracing whereas Fig. 13 shows the same scene rendered with
Phong lighting.
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Fig. 15. Minimum distances between mating facets and penetration depths
measured over the time steps of rigid-body simulation.
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Fig. 16. Tunnel (3-manifold embedded in 4D Euclidean space).

Fig. 14 shows a 3-manifold house with three cuboid rooms. Each
room is a 3-polytope, as presented in Fig. 12, and the concatenated
3-polytopes are embedded in 4D Euclidean space. The camera is
located at the red room, which is connected to the blue room by a
left doorway (henceforth, simply door) and to the gray room by a
right door. The blue and gray rooms are also connected by a door,
which we call the third door. Observe that Mona Lisa in the blue
room is visible through the right and third doors as well as through
the left door. Similarly, the outdoor scene (with sky and green yard)
visible through the gray room’s window is also visible through the
left and third doors. These would bring users unusual experiences,
which cannot be provided in Euclidean spaces.

The three-room house in Fig. 14 is a one-dimensional higher
version of that in Fig. 8-(a). Therefore, the novel user-experiences
presented in Fig. 8-(b) and -(c) can be reiterated: Starting from the
red room, the user passes through only three doors, i.e., the left,
third and right doors in sequence, to return to the red room.
When the polytope concatenation procedure presented in Sec-

tion 5 is used for creating the three-room house shown in Fig. 14, the
spring forces concatenate the 3-polytopes with no interpenetration,
making it unnecessary to invoke collision resolution. In Fig. 15, the
red curve depicts the average minimum distances between mating
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(b)
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A

summer
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(d)

Fig. 17. Four seasons (3-manifold embedded in 5D Euclidean space).

facets over the time steps whereas the blue curve depicts the average
penetration depths of the polytopes. As the rigid-body simulation
proceeds, both distances and penetration depths keep decreasing.

All experiments reported in this section aremadewith 3-manifolds,
but it is hard to visualize their structures. Therefore, as done with
the three-room house in Fig. 8-(a), the structure of a 3-manifold will
be visualized and discussed using the corresponding 2-manifold.
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Table 1. Illumination statistics: Elapsed times per frame (in milliseconds).

Red-&-blue rooms
(Fig. 13)

Three-room house
(Fig. 14)

Tunnel
(Fig. 16)

Four seasons
(Fig. 17)

Pillared rooms
(Fig. 18)

Phong lighting 6.9 4.3 3.9 10.8 8.1
Ray tracing 24.7 15.9 18.1 24.8 27.6
Path tracing 18416.3 108719.4 5514.5 7493.2 301770.5

(a) (b)

AA
A

o2

dragon’s

A

o1

bunny’s
room

dragon’s
room

bunny’s

(c)

3rd room

bunny’s
dragon’s

(d)

B

B

bunny’s
dragon’s
3rd room
4th room

(e)

Fig. 18. Pillared rooms (3-manifold embedded in 5D Euclidean space).

Let us see another example of 3-manifold embedded in 4D Eu-
clidean space. Fig. 16-(a) shows a tunnel seen from outside. It is short.
If we look inside the tunnel, however, we realize it is quite long, as
shown in Fig. 16-(b). Fig. 16-(c) explains how this non-Euclidean
space is created using three 2-polytopes, whereA, B andC represent
the mating facets. As depicted by red arrows, the camera ray fired
from o travels a long way to hit a surface point, q.

Fig. 17-(a) shows a 3-manifold scene, where the camera is located
in a dark room connected to four different outdoor spaces. The
spaces seen through the dark room’s windows are 3-polytopes that
represent four seasons. See Fig. 17-(b), where the small black upright
rectangles represent the facets that mate to the windows of the dark
room.

Fig. 17-(c) shows five 2-polytopes, which correspond to the dark
room and outdoor spaces, together with the mating facets. Without
joint polytopes, they cannot be concatenated in a penetration-free
state. In Fig. 17-(d), the four seasons are linked to the dark room
by joint polytopes. All polytopes are embedded in 3D Euclidean
space. Unfortunately, this is not valid. The four-season polytopes

are illustrated as small rectangles just for visualization purposes,
but they are wide open in reality. Therefore, for example, the spring
polytope penetrates the joint polytope connected to the summer
polytope.
We may not be able to escape from such an unwanted structure

even if we alternate many times between spring forces and collision
resolution. This can be resolved by increasing the dimension of the
embedding space to 4D. The similar discussion applies to the original
3-polytopes shown in Fig. 17-(a) and -(b): They are embedded in
5D Euclidean space, not in 4D space, to ensure non-penetration
between 3-polytopes.
Let us see another example of 3-manifold embedded in 5D Eu-

clidean space. Fig. 18-(a) would appear to be a pillared room, but a
bunny is on the left whereas a dragon is on the right. If the camera
translates to the right, we obtain the image shown in Fig. 18-(b) to
find that the space is not Euclidean.
Using 2-polytopes, Fig. 18-(c) presents how the non-Euclidean

space is generated. The mating facets are denoted as A, and the
small dark rectangles represent the areas occupied by pillars. The
bunny’s room and the dragon’s are linked by a joint polytope. Note
that o1 represents the camera’s position located “at the bunny’s
room” and is used for capturing Fig. 18-(a) whereas o2 is located “at
the dragon’s room” and is used for capturing Fig. 18-(b).
Fig. 18-(d) shows that a new room, named the 3rd room, is con-

catenated to the existing 2-manifold by a joint polytope. Suppose
that a user moves along the red curve, i.e., from the bunny’s room to
the dragon’s and then to the 3rd room. Walking around the pillars
that appear to be a single one located in a flat floor, the user can
visit the rooms one by one.

In Fig. 18-(e), another room, named the 4th room, is added to the
2-manifold. Due to the mating facets denoted as B, the 4th room is
concatenated to the bunny’s room by a joint polytope. (The joint
polytope is not illustrated in the figure as it would make Fig. 18-(e)
overly cluttered.) Note that the four rooms make a circular list. The
red curve depicted in Fig. 18-(d) is followed by the blue curve in
Fig. 18-(e), making the user return to the bunny’s room.

The 2-manifolds shown in Fig. 18-(c) and -(d) can be embedded in
3D Euclidean space, but the 2-manifold shown in Fig. 18-(e) cannot.
We need 4D embedding space. The similar discussion applies to
the original 3-polytopes shown in Fig. 18-(a) and -(b). They are
embedded in 5D Euclidean space, not in 4D space, to ensure non-
penetration.

Table 1 enumerates the elapsed times per frame (in milliseconds)
for rendering all test scenes reported in this section with three
techniques. Recall that Phong lighting and ray tracing are for real-
time rendering whereas path tracing is not.
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(a) (b) (c)

Fig. 19. Two-manifold and its approximation: (a) A 1-manifold. (b) This
2-manifold is obtained by extruding vertically the 1-manifold in (a). If this is
extruded along an additional axis, we obtain a 3-manifold. (c) The 2-manifold
in (b) is approximated with ten 2-polytopes.

Table 2. Times (in milliseconds) consumed by the major components in
illumination. In the concatenated 3-polytopes, the ray is not projected at all
but it crosses over the adjacent polytopes.

original
3-manifold

1M ray marching steps 0.6851
1M ray hit tests × 1K prisms 31914.8

1M projections 20.0344

concatenated
3-polytopes

1M ray marching steps 0.7689
1M ray hit tests × 100 triangles 1565.5
1M crossings over polytopes 2.8176

7 DISCUSSION AND LIMITATIONS

7.1 Performance Analysis
Fig. 19-(a) shows a circle, which is a 1-manifold. If it is extruded
along the vertical axis, we obtain a 2-manifold shown in Fig. 19-
(b). Fig. 19-(c) shows that the 2-manifold is approximated with ten
2-polytopes.
If the 2-manifold shown in Fig. 19-(b) is extruded along an addi-

tional axis, we obtain a 3-manifold. It is then approximated with ten
3-polytopes. We made a simple experiment to compare the perfor-
mance of illumination in the concatenated 3-polytopes and that in
the original 3-manifold.
In total, a thousand (1K) triangles are uniformly distributed in

the 3-manifold so that each 3-polytope is inhabited by 100 triangles.
The major components of illuminating the original 3-manifold are
ray marching and projection (as presented in Fig. 2-(d)) and ray
hit test with the prisms that are extruded from the triangles (using
Equation (4)). Just for test purposes, we fire only a single ray, which
makes a million (1M) marching steps even if it intersects some
prisms along its way. Then, both ray hit test and projection are
also made 1M times. In a single marching step, the ray is tested for
intersection with “1K prisms.” The upper row in Table 2 enumerates
the accumulated times in milliseconds.
In the test with the concatenation of ten 3-polytopes, the single

ray is forced to make 1M marching steps for comparison purposes.
As presented in Section 4, only a single step of ray marching is made
per polytope, and therefore the total number of polytope visits is
1M. (Each polytope is visited 100K times.) In a polytope, the ray
is tested for intersection with “100 triangles.” See the accumulated
times in the lower row of Table 2. The big difference in the ray hit
tests is explained by “1K prisms vs. 100 triangles.”

(a)

A

A C

C

B

B

(b)

Fig. 20. Challenging cases: (a) A 3-polytope is located at each vertex of the
octahedron. (b) The long 2-polytope’s length is three whereas the short
2-polytopes’ lengths are one. It is impossible to concatenated them.

7.2 Embedding Space
In computer graphics fields, virtually all methods for handling𝑚-
D non-Euclidean spaces take (𝑚 + 1)-D Euclidean space as the
embedding space. Good examples include not only the three-room
houses presented in Fig. 8-(a) and Fig. 14 but also the work of Silva et
al. [2018], which deals with embedding 3-manifolds in 4D Euclidean
spaces only. On the contrary, Fig. 17 and Fig. 18 show that the
embedding space’s dimension often must be higher than𝑚 + 1.
According to the Whitney embedding theorem [Whitney et al.

1992], it must be higher than 2𝑚 − 1 so as to be able to maintain
the geodesic distances of “all kinds” of continuous manifolds. For
example, it is 6 for 3-manifolds. In Section 6, all 3-manifolds are
embedded in 4D or 5D Euclidean spaces. However, it is not hard
to imagine a 3-manifold that cannot be embedded in 4D or 5D Eu-
clidean spaces but requires 6D embedding space. Suppose that we
have six 3-polytopes. Taking each 3-polytope as a point, let us con-
nect them using joint polytopes to construct an octahedral structure,
as shown in Fig. 20-(a). It can be embedded only in 3D or higher-
dimensional Euclidean spaces. As each vertex of the octahedron is a
3-polytope, the embedding space’s dimension should be accordingly
increased to 6D or higher. (Recall that our polytope concatenation
procedure can successfully embed such a 3-manifold in 6D space due
to its capability of increasing the embedding space’s dimensions.)

7.3 Scalability in Illumination
A single step of ray marching is made per polytope. Therefore, the
more polytopes, the higher cost. However, the cost does not increase
linearly because a ray (either camera ray or shadow ray) crosses
over polytopes only if there exists a mating facet on its way. This
results in sublinear complexity.

The red-&-blue rooms presented in Fig. 13 is rendered in real time
(without explosion). In the current implementation, we stop a ray
if its marching distance exceeds a pre-defined threshold. If the ray
marched further, it might hit a simplex. However, such a simplex
will appear quite tiny in the image space, contributing little to the
final image. On the other hand, our ray tree’s depth ranges from
three to five, as stated in Section 6. It also helps avoid explosion.
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(a) (b) (c)

Fig. 21. Polytope concatenation: (1) A large number of 1-polytopes are
concatenated successfully in 2D Euclidean space. (b) A concatenation failure
case in 2D Euclidean space. (c) A successful concatenation in 3D Euclidean
space.

7.4 Polytope Concatenation
The experimental results show that our polytope concatenation pro-
cedure works successfully unless the given polytopes are inherently
impossible to concatenate, for example, as illustrated in Fig. 20-(b).
However, it is often observed that joint polytopes are unnecessarily
created in cases where the given polytopes can be concatenated
without them. They are usually tiny but might make users annoying.
They also degrade run-time performances slightly.

For the sake of scalability of our concatenation procedure, con-
sider a 1-manifold shown in Fig. 21-(a). It is a one-dimensional lower
version of the band presented in Fig. 10 but is approximated with a
much larger number of polytopes (line segments). Tested with many
different initial configurations of the line segments, our procedure
successfully concatenates the line segments into closed curves in
a few iterations. Assume however that an incorrect concatenation
is produced after a pre-defined number of iterations, as shown in
Fig. 21-(b). Then, the embedding space’s dimension is increased to
three. In 3D Euclidean space, a correct concatenation is produced
almost always in a single iteration, as shown in Fig. 21-(c), where
the line segments are made ‘volumetric’ and ‘shaded’ just for visu-
alization purposes.

In the current implementation, the embedding space’s dimension
is increased after ten iterations without success. The count is heuris-
tically selected. It would be worth seeking a rigorous method to find
an optimal count. In principle, the concatenation procedure’s goal
is to solve a constrained optimization problem, where the objective
is to minimize the lengths of the vertex-connecting links and the
constraint is “non-penetration between polytopes.” However, it is
challenging to find a clever way to solve the optimization prob-
lem especially because the Minkowski difference between two rigid
bodies produces a number of linear inequalities.
On the other hand, it would be desirable to provide a user in-

terface for the scene designers to post-process the concatenated
polytopes. However, this is not easy due to the difficulties visualiz-
ing 3-polytopes in a higher-dimensional embedding space. We leave
the task of developing the optimal concatenation procedure and
user-friendly interface as a future work.

7.5 Differences from Portal-based Methods
Ourmethod is clearly distinguished from existing portal-basedmeth-
ods [CodeParade 2018; Demruth 2013; Valve 2007]. They provide
users with discontinuous movements between 3D Euclidean spaces
through teleportation at the portals, whereas our method supports
users’ continuous movements within a single non-Euclidean space.

s

g

(a)

s

gp

(b)

Fig. 22. Calculating the optimal path from s to g in concatenated polytopes:
(a) A number of nodes are located at the concatenated polytopes. (b) Given
the current path from s to p (in red), the heuristic costs of the fringe nodes
(connected with green edges) are estimated using their 𝐿2 distances to g
(colored in orange).

In addition, they render the spaces beyond the portals using the
secondary cameras located at those spaces, whereas our method
uses ray tracing with a single camera.
A notable advantage of embedding𝑚-polytopes in an 𝑛-D Eu-

clidean space is that all polytopes and simplices are defined in the
‘shared’ 𝑛-D space. Then, for example, we can compute the 𝐿2 dis-
tance between any pair of simplices even if they reside in different
polytopes. Taken as the lower bound of their geodesic distance that
is not straight in general, it can be used for many distance-based
applications. In collision detection, for example, the potentially col-
liding set can be quickly identified using the 𝐿2 distances.

In games, path planning algorithms, such as A∗ [Hart et al. 1968]
and jump point search algorithms [Harabor and Grastien 2011],
are widely used. For path planning in non-Euclidean spaces, the 𝐿2
distances can be used to estimate the heuristic costs. See Fig. 22-(a),
where s and g represent the start and goal nodes respectively. They
reside in different polytopes. Suppose that the red edge in Fig. 22-(b)
is the currently expanded path. Then, we should select one of the
fringe nodes connected with green edges, and the heuristic costs
can be estimated using the 𝐿2 distances from the fringe nodes to g,
which are visualized with dotted orange lines.

Consider a game world with a huge number of polytopes. It
may not be loaded into memory at once. Then, we can load only
the polytopes, whose 𝐿2 distances from the current polytope are
shorter than the threshold of the ray marching distance presented
in Section 7.3.

8 CONCLUSION AND FUTURE WORK
In this paper, we proposed a method for designing non-Euclidean
spaces of arbitrary dimensions. The spaces are represented as con-
catenated polytopes embedded in Euclidean spaces of higher dimen-
sions. We also proposed camera navigation and rendering methods
tailored to the concatenated polytopes. The experiment results are
promising and show the feasibility of the proposed methods.

However, our methods also have drawbacks. The rendering tech-
nique assumes static light sources. Processing dynamic light sources
would prevent the proposed system from being executed at real
time even on a high-end computer. As is the case for traditional 3D
applications such as games, it will be crucial to provide a user inter-
face for designing various non-Euclidean scenes. Our future work
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will be directed toward developing an intuitive tool for modeling
manifolds. This is also driven by the need to generate an optimal
concatenation.
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A 𝑚-MANIFOLDS IN 𝑛-D EUCLIDEAN SPACES
Given𝑚-manifolds embedded in𝑛-D Euclidean spaces, where𝑚 < 𝑛,
the camera is advanced using the 𝑛-D velocity vector and then pro-
jected onto the m-manifold. The camera-space basis is composed of
𝑚 unit vectors including view. They are𝑛-D and orthonormal. Based
on the user input to change the view direction, view is updated first.
Then, the remaining𝑚−1 vectors are updated one by one, as done in
Section 3.2. Recall that the basis vectors in “3-manifolds embedded
in 4D Euclidean space" were updated via cross presented in Equa-
tion (2) and normal was involved in it. We now have 𝑛 −𝑚 normals.
They are all involved in the basis update procedure, together with
𝑚 − 1 basis vectors, i.e., in total, 𝑛 − 1 vectors are involved. For this,
cross in Equation (2) is extended to take 𝑛 − 1 vectors:

cross(v1, v2, ..., v𝑛−1) = ★(v1 ∧ v2 ∧ ... ∧ v𝑛−1) (7)

where ★ represents Hodge star operator [Bernstein 2009] and ∧
represents the exterior product operator.

Hodge star operation is described using the language of geometry
algebra [Macdonald 2010]. The exterior product, ∧, of 𝑛−1 1-vectors
returns an (𝑛−1)-vector. On the other hand, Hodge Star operator in
𝑛-D space is a linear mapping between𝑚-D subspace and (𝑛 −𝑚)-
D subspace. Each (𝑛 − 1)-blade is mapped to the corresponding
1-blade. For example, in 3D space with orthonormal basis vectors,
e1, e2 and e3, the exterior product of two 1-vectors, 𝑎e1 + 𝑏e2 + 𝑐e3
and 𝑑e1 +𝑒e2 + 𝑓 e3, is (𝑎𝑒 −𝑏𝑓 )e1e2 + (𝑏𝑓 −𝑐𝑒)e2e3 + (𝑐𝑑 −𝑎𝑓 )e3e1,
which is a 2-vector. Applying Hodge star operator to the 2-vector,
we obtain (𝑏𝑓 − 𝑐𝑒)e1 + (𝑐𝑑 − 𝑎𝑓 )e2 + (𝑎𝑒 − 𝑏𝑓 )e3. This is the cross
product of the two 1-vectors. In the same manner, we can compute
the cross product of any dimensional vectors using Hodge Star
operation.
In theory, the screen space in𝑚-manifold is not limited to 2D

but may be up to (𝑚 − 1)-D. The screen space is regularly sampled
to define what we call hyperpixels. Each hyperpixel is assigned the
camera-space coordinates, i.e., the coordinates with respect to𝑚
basis vectors of the camera space. The basis vectors are all 𝑛-D and
are linearly combined using the coordinates of each hyperpixel to
define its 𝑛-D position. Toward each 𝑛-D hyperpixel, a ray is fired.

In typical display devices such as PC monitor or VR HMD, how-
ever, the screen is 2D. For rendering an m-manifold scene into such
a 2D screen, a 2D rectangle is defined in the𝑚-D camera space such
that view is orthogonal to it and points to its center. The rectangle
is regularly sampled to define a 2D array of pixels, and each pixel
is assigned the coordinates with respect to𝑚 basis vectors of the
camera space. The 𝑛-D basis vectors are linearly combined using
the coordinates of each pixel to define its 𝑛-D position. Toward each
𝑛-D pixel, a ray is fired.
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