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This paper presents a novel method for simulating inducible rigid mag-
nets efficiently and stably. In the proposed method, inducible magnets are
magnetized by a modified magnetization dynamics, so that the magnetic
equilibrium can be obtained in a computationally efficient manner. Fur-
thermore, our model of magnetic forces takes magnetization change into
account to produce stable motions of inducible magnets. The experiments
show that the proposed method enables a large-scale simulation involving a
huge number of inducible magnets.

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Magnetic fields and forces, rigid body
dynamics

ACM Reference Format:

Seung-wook Kim and JungHyun Han. 2022. Fast Stabilization of Inducible
Magnet Simulation. ACM Trans. Graph. 1, 1 (September 2022), 8 pages. https:
//doi.org/10.1145/3550469.3555410

1 INTRODUCTION

A magnet produces a magnetic field, which magnetizes nearby metal-
lic materials. If the magnetized state lasts forever, the materials are
called permanent magnets. In most materials, however, the magneti-
zation is preserved only when exposed to the magnetic field. These
materials, such as iron balls and paperclips, are called inducible
magnets.

In the computer graphics field, many methods for magnet simula-
tions have been proposed since the seminal work of Thomaszewski
et al. [2008]. Among them, the state of the art in simulating rigid
magnets is the work of Kim et al. [2018]. They introduced the mag-
netization dynamics of inducible magnets, which was widely used
in micromagnetics. Their method is able to simulate rigid magnets
more effectively and stably than before, but it has limitations. Firstly,
due to the non-differentiable nature of their magnetization dynam-
ics and also excessive approximations of the magnetic forces, their
simulation may diverge if the magnetic field is excessively strong.
Secondly, even though their simulation converges in most cases, the
convergence rate may not be fast enough, and a considerable amount
of time is often required to reach the equilibrium of magnetization.

In this paper, we propose solutions to the above-mentioned limi-
tations. Our contributions are listed as follows:
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e We model the relation between the magnetic field and magnetiza-
tion with a differentiable function, which enables the magnetiza-
tion to change always smoothly as the magnetic field changes.

e We propose a general magnetic-force model, which helps the
magnetic simulation converge easily.

e We modify the magnetization dynamics in a way that improves
the convergence rates significantly.

2 RELATED WORK

In the computer graphics field, Thomaszewski et al. [2008] presented
the first work for magnetic interactions using magnetic moments
that are point magnets. Using them, magnetic induction and mag-
netic forces/torques are calculated. However, their work suffers from
instability due to excessively strong magnetic fields. Kim et al. [2018]
proposed magnetization dynamics to limit the magnets’ strengths,
which enable more stable rigid magnet simulations. However, their
method just alleviates the instability problem and still suffers from
it. On the other hand, Kim and Han [2020] used boundary integral
to evaluate magnetic forces and torques for the sake of reducing the
time complexity. Their method considers the continuity of magneti-
zation in magnets, enabling more stable rigid magnet simulations.
However, it requires numerical integration over polyhedral mag-
nets’ boundaries, and the process of integration still consumes a
certain amount of time.

Several works have been reported for non-rigid magnet simula-
tions. Ishikawa et al. [2013] simulated magnetic fluids, expressing
spikes of the fluid surfaces using energy minimization. Huang et
al. [2019] tackled this problem in a different way to produce accurate
and effective results. Their method uses unconditionally stable mag-
netic forces between magnetic particles without diverging forces.
Based on the work of Da et al. [2016], Huang and Michels [2020]
simulated magnetic fluids using only the liquid surfaces on which
magnetic forces are exerted. Ni et al. [2020] proposed a level-set
method based on Eulerian simulation to express interactions of
magnetic liquids and solids. This method also uses magnetic forces
which are exerted on the material’s boundaries. Sun et al. [2021]
implemented a material point method for nonlinearly magnetized
materials using Langevin functions.

3 METHOD

Section 3.1 proposes a general model of the magnetic forces ex-
erted on inducible magnets. The forces are defined in terms of mag-
netizations, and therefore we need a method to determine them.
Section 3.2 summarizes the magnetization dynamics proposed by
Kim et al. [2018]. Section 3.3 discusses its limitations and presents
our solutions, which enable us to compute the magnetic forces in a
robust and efficient manner.
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Fig. 1. Magnetization dynamics: (a) Given Heg, each submagnetization, M;,
makes both precessional motion (red arrow) and damping motion (blue
arrow). Given the precessional motion only, M; would keep rotating about
Hefs (along the dotted red circle). Due the damping motion, however, M;’s
motion becomes spiral (dotted green). (b) The damping motion of M; is
made through a simple dynamics that updates 6;. M equals to the average
of My and M;.

3.1 Magpnetic Force

A magnetic object (henceforth, simply magnet) has its own magnetic
moments. Being vector quantities, they represent the strength of
the magnet. Suppose that N magnetic moments are sampled from a
magnet, each denoted as m;. Given an arbitrary point, p, in the space,
let r; represent the vector connecting m; and p. Then, the magnetic
field, which we denote as H, is generated at p by m; [Jackson 1999]:
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Consider a magnetic moment, m, located at p. Its density is called

magnetization, which we denote as M, i.e, M = m/V, where V

represents the magnet’s volume. Then, the magnetic flux density,
denoted as B, is defined as follows:

B =1 (M +H) @)

where p represents the permeability of the free space. The relation
given in Equation (2) is governed by Maxwell’s equations.
Magnetic forces are required for rigid-body simulation of mag-
nets. We propose to compute the magnetic forces using Zeeman
energy [Lakshmanan 2011], which has been widely adopted in the
context of micromagnetics. Denoted as E, it is defined as follows:

E=-m-B 3)

Being the negative gradient of E, the magnetic force is expanded as
follows:

F=V (m-B)
= wpVV (M- (M+H))
=pV (% (ZM+H) + EM)
or or
(aM oH
= Ho
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Fig. 2. Magnetization curves: (a) Non-differentiable curve in Kim et al. [2018].
(b) Our differentiable curve.

As % can be analytically obtained from Equation (1), % remains
as the only unknown term in Equation (4). In Section 3.3, we will
define the magnetization, M, as a function of H so that % can be
computed.

3.2 Magnetization Dynamics

This subsection briefly presents the magnetization dynamics imple-
mented by Kim et al. [2018]. For magnetic induction, they used the
so-called effective magnetic field, denoted as Heg. It is comprised of
both external and internal (self-exerting) magnetic fields, and its
simple form is expressed as follows:

Heg =H-ypM (5

where yp is the self-demagnetizing factor. For a spherically shaped
magnetic moment, yp = 1/3.

The magnetization, M, of a single magnetic moment is decom-
posed into two submagnetizations, M; and Ma. Given Hg evalu-
ated at the magnetic moment, Landau-Lifshitz-Gilbert (LLG) equa-
tion [Gilbert 1955] is used to simulate M;’s dynamics:

% = —#(Mi X Hegr + aM; X (M; X Heff)) 6)
where y is the gyromagnetic ratio, and « is the material-specific
damping constant that is between 0.2 and 0.25 in the current imple-
mentation. Once M; and My are updated, their average is taken as
M.

In Equation (6), M; X Heg represents the precessional motion
whereas M; X (M; X Hegr) does the damping motion. See Fig. 1-(a).
Using the damping motion, the dynamics tries to align M; with Heg.

Through Equations (5) and (6), M converges, and the relation
between M and H is defined as follows:

1 .
—H if[|H|| < ypMs
YD
M= (7)

M

IH|

H otherwise

where M represents the maximum magnitude of magnetization.
Fig. 2-(a) depicts the magnetization curve defined by Equation (7).



3.3 Problems of Magnetization Dynamics and Our
Solutions

The magnetization dynamics presented in Section 3.2 reveals sev-
eral problems. Firstly, its convergence rate is not fast enough. It is
mainly due to the precessional motion depicted in Fig. 1-(a). Our
solution is to discard the precessional motion and take only the
damping motion. If we used the damping term in Equation (6) as is,
however, we would still suffer from numerical errors because the
damping motions are not circular. The stronger Heg is, the larger the
errors are. Worse still, the errors may also affect nearby inducible
magnets, often resulting in chaotic Heg, which eventually prevents
the magnetization dynamics from being converged.

We tackle this problem by adopting a simple dynamics that guar-
antees “circular damping motions” of M;. Let us denote the angle
between Heg and M; as 6;, as shown in Fig. 1-(b), and define the
time derivative of 0; as follows:

do;

o = PIHel|O00:) ®

where f is a user-defined damping coefficient that is set to 0.005 in
our implementation, and

o) = {sin 9,: if 6] < 7)2 o
2—sinf; otherwise
The trigonometric functions are derived from the double cross prod-
uct of M; with Heg in Equation (6). The updated 0; updates M;, and
the average of M; and Mj, is taken as M.

Ignoring the precessional motion would make our magnetization
dynamics physically less correct. However, the experiment results
reported in Section 5 are visually pleasing and show no notice-
able artifacts, compared with the simulation results of the previous
works.

Another problem of the magnetization dynamics proposed by
Kim et al. [2018] is that the magnetization curve depicted in Fig. 2-
(a) is not smooth. In principle, the magnetization curve should be
smooth, i.e., differentiable, as shown in Fig. 2-(b). Otherwise, mag-
netic fields, magnetizations and resulting magnetic forces become
non-differentiable, which may often prevent the magnets’ motions
from being smooth.

In our method, the smooth magnetization curve depicted in Fig. 2-
(b) is modeled with a hyperbolic tangent function:

M= f(H)
- %tanh(MiSHHH)H (10)

M is differentiable, enabling us to evaluate % in Equation (4) at
any time.

Equation (10) is devised so that the differential curve resembles
the non-differential one in Fig. 2-(a) as much as possible. They share
not only the saturated magnetization’s magnitude, M;, but also
the initial slope. Equation (10) asserts that the initial slope of the
differentiable curve is three. On the other hand, Equation (7) asserts
that the slope of the non-differentiable curve shown in Fig. 2-(a)
remains as % before saturation. For a spherical magnetic moment,
yD = 1/3, making the slope also three.
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repeat
for each magnetization M = {My, M2} do
compute H using Equation (1)
compute Heg using Equation (11)
integrate 6; using Equation (8)
update M; from 6;
end
until every M converges;

for each pair of magnetic moments do
| compute F using Equation (4)
end
Algorithm 1: Magnetic simulation.

As we replace Equation (7), which contains yp, by Equation (10),
we need to redefine Heg (given in Equation (5)) without using yp.
Noting again that yp represents the inverse slope of the magnetiza-
tion curve, Heg is redefined as follows:

Heg=H-ycM (11)

where yc = |1 (M)].

Unfortunately, yc in Equation (11) may become excessively large
if the derivative of || f (H)|| becomes close to zero. We resolve this
problem by defining the upper bound of yc; If the derivative of
[lf(H)|| is nearly zero, i.e., if ||M|| almost reaches the maximum
magnitude of magnetization, Mj, yc is clamped to the upper bound.

4 IMPLEMENTATION

Algorithm 1 shows the magnetic simulation steps. Each magnet is
sampled with magnetic moments. On the position of each magnetic
moment, the magnetic field, H, is computed using Equation (1).
Given the magnetization, M, of the magnetic moment, the effective
magnetic field, Heg, is calculated using Equation (11). Given Heg, 6;
is updated using Equation (8), and then M; is defined by 6;. After all
magnetizations converge, the magnetic forces are computed using
Equation (4) and then are sent to the rigid-body solver.

Equation (10) asserts that M of an inducible magnet is aligned
with H. Because magnetic torque occurs only when M is not aligned
with H, magnetic torque of an inducible magnet is not handled at
all in Algorithm 1.

5 EXPERIMENT RESULTS

Our experiments are all made with Intel Core i7-8700 3.20 GHz CPU
and 32 GB memory. Bullet Physics [Coumans 2015] is used for rigid-
body simulation with the time step size of 1ms whereas magnetic
simulation is made with that of 30~200ns. All scenes are rendered
using Mitsuba [Jakob 2010]. The accompanying video shows all
experiments presented in this section.

The method of Kim et al. [2018] produces good results when the
magnetic forces are moderately strong. If they are made excessively
strong (e.g., for generating an impressive scene), however, it may
become unstable. All experiments reported in this section are made
with excessively strong magnets, and the simulation results of our
method are compared with those of Kim et al. [2018]. Section 6.1
will rigorously discuss why our method outperforms [Kim et al.
2018].
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Fig. 3. [Balls Up] A mid-air cube magnet attracts a number of iron balls: (a) Initial state. (b)-(c) The results of [Kim et al. 2018]. (d) Ours.
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Fig. 4. [Alphabets] An invisible excessively-strong magnetic moment is located at the center of the alphabet magnets: (a) Initial state. (b) In both [Kim et al.
2018] and our method, the alphabets initially get together. (c) In [Kim et al. 2018], however, the alphabets are blown up immediately. (d) In contrast, our

method runs the simulation stably.
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Fig. 5. [Falling Magnet] A heavy and strong sphere magnet falls down

and strikes the metal balls: (a) Initial state. (b) The result of [Kim et al. 2018].

(c) Ours.

In both our method and [Kim et al. 2018], the magnetic forces
diverge if ||r;|| in Equation (1) becomes close to zero. In such a
case, a small fraction, €2, is added to ||r;||° in the denominator. It is
informally called a smoothing operation.

Balls Up. Fig. 3-(a) shows the initial state of a mid-air neodymium
magnet and a stack of 243 (9 X 9 X 3) iron balls on the ground. Being
a permanent magnet, the neodymium magnet is quite strong in
general. It will magnetize and pull up the balls. No friction is used
in this experiment because our purpose is to assess the stability of
magnetic simulation without the aid of friction. Fig. 3-(b) and (c)
show the results of [Kim et al. 2018]. The iron balls are successfully
attracted by the neodymium magnet but they do not settle down.
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The balls keep vibrating and even rotate around the neodymium
magnet. In contrast, Fig. 3-(d) shows the result of our method, where
the iron balls are stably stuck to each other and to the neodymium
magnet.

Alphabets. Fig. 4-(a) shows a group of mid-air alphabet-shaped
inducible magnets. We have 100 alphabets structured in a 3D grid
of 5 X 5 X 4 points. Once an invisible but excessively strong mag-
netic moment is located at the center of the grid, it magnetizes the
alphabets so that they get together, as shown in Fig. 4-(b). In [Kim
et al. 2018], however, the alphabets are then rapidly separated from
each other and blown up, as shown in Fig. 4-(c). In contrast, the
simulation remains stable in our method, as shown in Fig. 4-(d).

Falling Magnet. In Fig. 5-(a), a heavy and strong magnet is above
a stack of 1032 metal balls on the ground. It falls and strikes the balls.
Fig. 5-(b) shows the result of [Kim et al. 2018], where the balls are
scattered due to unstable simulation. In contrast, Fig. 5-(c) shows
the result of our stable simulation method.

Sakura Tree. In Fig. 6, 2500 iron balls are falling from the sky and
are attracted by the tree magnet. A magnetic moment is attached to
the end of each branch so that the falling balls are stuck around the
branch ends. This experiment demonstrates our method’s capability
of running a large-scale simulation stably.

For the experiments presented so far, Table 1 reports the average
times measured in milliseconds “per frame” which are spent for
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Fig. 6. [Sakura Tree] A number of iron balls fall down and stick to the tree magnet: (a) The results of [Kim et al. 2018]. (b) Our method enables a large-scale

simulation to run stably.

Fig. 7. Convergence of M; and My: (a) Initial state. (b) The result of [Kim et al. 2018]. (c) Ours.

Table 1. Performance measurements: T;, Ty and T, represent the times (in
milliseconds) spent for magnetic induction, magnetic-force computation
and rigid-body simulation, respectively.

Scene [Kim et al. 2018] Our method
L | Tr | T, | Ti | Tr | Tr
Balls Up (Fig. 3) 20 | 35| 14 | 1.8 | 38 | 14
Alphabets (Fig. 4) 3.3 1.3 15 1.3 14 110

Falling Magnet (Fig.5) | 251 | 58 | 59 | 36 | 61 60
Sakura Tree (Fig. 6) 778 | 97 | 65 61 | 101 | 75

magnetic induction (T;), magnetic-force computation (Tr) and rigid-
body simulation (T,.). For example, T; of [Kim et al. 2018] in Balls
Up is measured for 1000 frames, and their average is 20 milliseconds.
In all experiments, T; in our method are significantly smaller than
those of [Kim et al. 2018] because our magnetization dynamics does

not consider the precessional motions of submagnetizations. Table 1
shows that in Alphabets, T, of ours is much larger than that of [Kim
etal. 2018]. It is devoted to resolving collisions between alphabets. In
[Kim et al. 2018], the alphabets are blown up, as shown in Fig. 4-(c),
and therefore the rigid-body simulator remains largely idle.

Fig. 7-(a) shows a set of crystal balls around a strong bar magnet.
In each ball, the submagnetizations, M1 and My, are visualized
in red and blue vectors. Whereas the balls are fixed in the space,
the submagnetizations are updated, i.e., rotated, not only by the
magnetic field generated by the bar magnet but also by the magnetic
fields generated by the other balls’ magnetizations. Fig. 7-(b) shows
the oscillating and divergent submagnetizations simulated by [Kim
et al. 2018], and Fig. 7-(c) shows the result of our method, where the
dynamics quickly converges. Because our magnetization dynamics
does not include precessional motions and alleviates numerical
errors, it enables fast convergence of magnetization.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2022.
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Fig. 8. In the experiment setup of Fig. 7 with two distinct strengths of the bar magnet, the magnetization errors, ey, are measured through iterations: (a)

Errors in [Kim et al. 2018]. (b) Ours. (c) Errors in damping-only LLG.

Given M updated by magnetization dynamics, the magnetization
error, which we denote as ey, is defined as follows:

. Mg — M]|
M= "0 1
Mg |l

where My, is the groundtruth magnetization. In [Kim et al. 2018],
My; is computed using Equation (7). In our method, it is computed
using Equation (10).

In the experimental setup shown in Fig. 7, ey is evaluated. Fig. 8-
(a) shows two curves of ey in [Kim et al. 2018]; the red curve depicts
em measured with a strong bar magnet, i.e., with a strong magnetic
field, and the green one is with a weak bar magnet. The red curve
shows that the strong magnet field prevents the magnetization dy-
namics of [Kim et al. 2018] from being converged. On the other
hand, given a weak magnetic field, ey decreases through iterations,
but the decreasing rate is slow, i.e., the magnetization dynamics con-
verges slowly. In contrast, Fig. 8-(b) shows that our magnetization
dynamics converges fast regardless of the magnetic field strengths.

As discussed in Section 3.3, taking only the damping motion in
Equation (6) as is, which we call damping-only LLG, would also
suffer from numerical errors. Fig. 8-(c) shows the test results. As in
[Kim et al. 2018], the damping-only LLG does not converge under
the strong magnetic field. Given a weak magnetic field, it converges
a little faster than [Kim et al. 2018] because it is free from the
numerical errors brought by the precessional motion.

In the same experimental setup shown in Fig. 7, let us see how our
method, [Kim et al. 2018] and damping-only LLG work with varying
parameters. In Fig. 7, the time step size, At, is set to 100ns. Now, it
is multiplied by 1.0 up to 1.5 in steps of 0.01. The horizontal axis
in Fig. 9 represents such 51 distinct time steps. On the other hand,
the vertical axis in Fig. 9 is for the magnetic field’s strength, ||H||. In
this test, it is made to be a multiple of ||M||. The multiplier ranges
from 0.0 to 10.0 in steps of 0.01, i.e., we have 1001 distinct values of
||H]|. In total, we have 51 X 1001 combinations of At and ||H||. For a
combination, 10,000 tests are made, each with a randomly selected
direction of H, and the average of the iteration counts is depicted in
rainbow colors, VIBGYOR, where Violet implies a single iteration
and Red implies more than 999 iterations or a failure case. Fig. 9
shows that our method is superior to [Kim et al. 2018] and the
damping-only LLG.

(12)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2022.

10 10 10
9 9 9
8 8 8
7 7 7
_ 6 _ 6 _ 6
T 5 T 5 T 5
=4 =4 =4
3 3 3
2 2 2
1 1 1
0 0 0

©

Fig. 9. The iteration counts are color-coded in the 2D space spanned by At
and [[H]||. (a) Our method. (b) [Kim et al. 2018]. (c) Damping-only LLG.

6 DISCUSSION
6.1 Magnetic Force and Magnetization Dynamics

This subsection shows that the force model adopted in most of
the previous works [Huang et al. 2019; Kim and Han 2020; Kim
et al. 2018; Sun et al. 2021; Thomaszewski et al. 2008] is excessively
approximated and the simulation in the method of Kim et al. [2018]
may not converge easily. Our method does not suffer from the
problems; this explains why our method outperforms the method
of Kim et al. [2018] in the experiments presented in Section 5.

In most of the previous works, the magnetic force, F, is defined
as follows:

F=pom-VH (13)

Plugging H given in Equation (1) into Equation (13) returns the
following:

N

F= gg% >

i

—151‘,’((111 . ri) . (mi . ri))

7
lIrll

3r; (m . mi) + 3(m(mi . ri) + m,-(m . r,'))

+ T } (14)

[|r;

It is the force exerted on m by m;. This force model assumes that both
m; and m are constants. However, m; may change via magnetization
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Fig. 10. Visualization of magnetic force field over a cross section of a spher-
ical magnet, which is uniformly magnetized. The magnitudes of the force
field are in rainbow colors, VIBGYOR, where Violet is the weakest and Red
is the strongest. (a) The result of [Kim et al. 2018]. (b) Ours.

dynamics and even their positions may change, i.e., r; may change.
The same applies also to m. F given in Equation (14) would work
if all of m, m; and r; were fixed. In general, however, magnets
continuously move, resulting in dynamically changing m, m; and
r;. F in Equation (14) is excessively approximated, making it not
easy for rigid-body dynamics as well as magnetization dynamics to
converge.

In our method, F = V(m - B) as defined in Equation (4), i.e.,
magnetic moments and equivalently magnetizations are taken as
variables. In Equation (4), the spatial derivative, %, implies that

our method allows M to change its position; In more detail, % is

rephrased as 3—11\_14 % so that r’s change causes H’s change which then

causes M’s change. In addition to this rigid-body dynamics, note
that our magnetization dynamics makes H independently change
M.

Recall that M; is aligned with Heg via magnetization dynamics.
Then, M; tends to equal My, maximizing M that is defined as the
average of M and My. On the other hand, our F is along V(M?),
as can be found in Equation (4), i.e., F also tries to maximize the
strength of M. The magnetization dynamics and the magnetic force
work together for maximizing M, making our simulation stabilized
quickly.

In Equation (13), F is defined in terms of H. In contrast, our method
defines F in terms of B (in Equation (4)), which is defined in terms
of M as well as H (in Equation (2)). Then, it might be argued that
the ‘additional’ M may cause excessively strong magnetic forces.
In reality, the opposite is true. Fig. 2-(b) shows that % decreases

as the magnitude of M increases. Such decreasing % reduces F in
Equation (4). Fig. 10 visualizes magnetic forces over a cross section
of a spherical magnet. Not surprisingly, the forces generated by the
method of Kim et al. [2018] (shown in Fig. 10-(a)) are stronger than
those generated by our method (shown in Fig. 10-(b)).

Finally, note that the force, F, defined as gom- VH in Equation (13)
is a simplified form of our F, defined as V(m - B) in Equation (4).
Because B = pip (M + H) (in Equation (2)), F = V(m - B) = oV (m -
(M +H)). When m and M are assumed to be constant, as done in
most of the previous works, F = pgom - VH. Our force model is a
generalization of the force model used in the previous works.
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6.2 Magnetization Curve

An alternative to Equation (10) might be the Langevin function
used in the work of Sun et al. [2021]. Denoted as £ (x), it is defined
as cothx — x~ 1. In our study, the first trial was to define the dif-
ferentiable magnetization curve using & (x). However, we found
that £ (x) is computationally unstable, i.e., the function is error-
prone when x is nearly zero. The same problem is encountered if
we compute the derivative of Z(x).

6.3 Uniqueness of Magnetization Dynamics Solutions

Our magnetization dynamics is modeled with an intuitive approach,
and discarding the precessional motion may be taken as physically
less correct. Unfortunately, there is no analytic solution of magne-
tization dynamics due to its complexity, and therefore we cannot
verify our numerical solution by comparing it with the analytic one.

In the recent works [Huang et al. 2019; Huang and Michels 2020;
Ni et al. 2020; Sun et al. 2021], it has been experimentally proved
that there is a unique solution per environment with respect to
magnetostatics. Recall that given the weak bar magnet in Fig. 8,
both the method of Kim et al. [2018] and our method converged. For
each of 178 crystal balls, we computed ||[Mg — Mo||/||[Mx||, where
Mk denotes the magnetization of the method of Kim et al. [2018]
and Mg denotes that of our method. Its average is around 0.0008, i.e.,
0.08%, which represents a negligible error. Even though this validates
practically the uniqueness of magnetization dynamics solutions, we
acknowledge that the physical motivation for our method has not
been completely verified. A full understanding of why our method
works is a future research topic.

7 CONCLUSION

We proposed a method for simulating inducible rigid magnets in
an efficient and stable way. In the method, each magnet becomes
induced by a novel magnetization dynamics, which does not take
the precessional motions into account but considers only the damp-
ing motions, so that the dynamics easily converges. Furthermore,
our magnetic-force model is devised to be sensitive to magnetiza-
tion change so that the distribution of magnetizations can quickly
reach its equilibrium. These features enable more stable motions of
magnets in an efficient way.

However, our method has several limitations in addition to the
fundamental issue discussed in Section 6.3. Our method focuses on
inducible magnets, not on permanent magnets. Given a scene mainly
composed of permanent magnets, for example, our method may
not excel the previous works. In addition, even though our method
seldom diverges, it is not completely free from accumulation of
numerical error, due to the time-stepping scheme of rigid-body
simulation. Our future work will be made to resolve these issues.
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